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Dispersion and peak likelihood—two performance measures recently used for the description of
quantum phase—are compared in this Rapid Communication. The Susskind-Glogower phase oper-
ator represents the extremal quantum estimator with respect to both measures. The states with
infinite peak likelihood and zero phase information explicitly demonstrate that peak likelihood is
not relevant to the phase measurement, whereas dispersion represents a well-behaved performance
measure of the phase variable. Peak likelihood restricts the lower limit of the variance of photon
number, and the above-mentioned states represent the extremal states of the Shapiro-Shepard [Phys.

Rev. A 43, 3795 (1991)] uncertainty relation.

PACS numbers: 42.50.Dv, 06.30 Lz, 07.60.Ly, 03.65.Bz

The existence of some meaningful performance mea-
sure of quantum-phase measurement has been a long-
standing problem for every phase concept used in the
past. A performance measure is intuitively understood as
a functional associated with the given probability density
function (PDF) of phase measurement, which in princi-
ple makes it possible to compare the accuracy of different
phase-shift measurements. The specification of an appro-
priate performance measure is crucial to the investigation
of the ultimate limit of phase-shift measurements.

This Rapid Communication addresses the phase-
measurement problem from the viewpoint of quantum
estimation theory [1] along the same lines established in
papers [2-4]. Specifically, we compare the recently intro-
duced performance measures of phase variance, recipro-
cal peak likelihood, and dispersion. We will demonstrate
that an optimum performance measure of the phase vari-
able exists, according to the mathematical statistics, as
dispersion. The relations between the above-mentioned
quantities are specified and the reasons for the failure
of the remaining ones are mentioned. Particularly, the
weakness of the reciprocal peak likelihood explains the
behavior of the PDF specified in Ref. [4], which achieves
the infinite peak likelihood but contains no information
about phase shift. Moreover, it is emphasized, that the
Susskind-Glogower (SG) phase concept is not only the
maximum likelihood estimator [2], but also the minimum
dispersion estimator [1].

Consider the general quantum estimation problem of
measurement of phase variable § = (—, 7], which enters
the input quantum state |1)in, on which the measurement
is performed, as

[¥) = exp(iff)|)in, (1)

#i = a'a being the photon-number operator of the single-
mode boson field. According to the quantum estima-
tion theory, every measurement can be described using a
probability operator measure (POM) dII(¢), which pro-
vides the positively defined resolution of the identity op-
erator

"dfig) =1, dfi(g)>o.

-7
The conditional probability density p(8|¢) of finding the
value ¢ , while the given shift is 6, is simply given as

p(6]¢)de = (¥|dI1(8)|). (2)

The general question then is to optimize the whole mea-
surement, i.e., to choose the best POM representing it.
Of course, the criterion of the best choice is still rather
vague, unless we specify how the deviations from the true
value are important. For this purpose, the cost function
C(8, ¢), assessing the cost of errors in the estimates, is in-
troduced. The optimum strategy needs to pick the POM,
which minimizes the average cost

c=apm [ ) / "0 0(0,6) WA@Y, (3)

and may be found by the method of Lagrange multipliers,
as is done in Ref. [1], Chap. 8. This quantity represents
the asked performance measure for the particular choice
of cost function C(8,¢) .

All considerations of this Rapid Communication are
performed using the Susskind-Glogower phase concept
due to its extremal properties. Particularly, we will as-
sume that the phase measurement is matched to the mea-
sured input quantum state as

dil(¢) = |e, ) (v, e®|dg/2m, (4)

where

!eiq&, Yy = Z ez‘dzn-{—ix,,ln),

n=0
oo

[YV)in = ane”"‘ln), T, > 0.
n=0

The state
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is the eigenstate of the SG operator A = (A +1)"1/24.
Another remarkable property of this phase concept is
that the phase representation of |¢) is intimately related
to the number-ket expansion, since they are a Fourier
transform pair [3]

@(eida) — ane—iqbn’
= (5)
Yn = (1/27) | dp®(e®)ei®™,

where ®(e'?) = (e**|y)) and ¥, = (n|t). The conditional
PDF (2) then has the form

psc(0]¢) = psc(¢ —6)

1 X
Z G=Om-m)y o 6)

2 n,m=0

Let us specify now the performance measures rele-
vant to the phase measurement. The standard proce-
dure tends to the criterion of the mean-square error, if
the cost function in (3) is specified as the quadratic func-
tion C(8,4) = (6 — ¢)2. Then, as is detailed in [1], the
minimum average cost is given as

Chin = (A¢)2 = <¢2> - <¢>2v

where the parentheses abbreviate the mean value over
phase (---) = [ d¢ psa(¢)---. However, this func-
tional is not appropriate as a performance measure of the
phase variable, since it is evidently not invariant with re-
spect to the phase shift transformation. Consequently,
the two shifted PDF’s p(¢) and p(¢ + c), which differ
in mean values of phase about an arbitrary value c, will
not result in the same mean-square error, even if they
have the same shape. This property will be used in the
following treatment.

The investigations of Refs. [2,3] are relevant to the
singular cost function C(6,¢) = —6(8 — ¢). The SG
POM (4) is shown to be an extremal estimator, which
tends to the criterion of minimum of the reciprocal peak
likelihood

8¢ =1/p(8l¢ = 6) = 27/ f* (7)

or, equivalently, the maximum peak likelihood p(6|¢ =
6) = f2/2m, where f is an abbreviation for Y, o Zn.
This measure is evidently invariant with respect to the
phase-shift transformation, since the peak likelihood, i.e.,
the height of the PDF, is independent of its position.
Nevertheless, the peak likelihood does not represent a
meaningful performance measure of the phase variable.
In reality, the large value of peak likelihood does not nec-
essarily imply that all the measured data are distributed
sufficiently close to the mean value. An example of such
behavior is given in Ref. [4] as the state, which provides
the given average number of photons IV, the infinite peak
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likelihood, but converges in norm to the vacuum state
M 12 M
[0)+<N/Zl/n> Zl/nln)]
n=0 n=0
(8)

An explanation of this behavior may be given, if the cost
function

C(ev ¢) = Iew

) = Jim_

— e*|? = 4sin’((6 — ¢)/2) (9)

is taken into account. This tends to the criterion of dis-
persion

D? =1 — |(e")?, (10)

and the POM minimizing the average cost function is
the same as in the previous case, see Ref. [1], Chap. 8,
2b, and therefore, the SG POM provides the quantum
measurement for the minimum dispersion estimation. In
this case, the dispersion may be specified as

oo
D2 =1- anzn—l
n=0

o0
=3 (@n —zn_1)?, (1)
n=0
where formally z_; = 0. We will now show that the prob-
lems of previously mentioned performance measures dis-
appear in the case of dispersion.

Some properties of dispersion are evident. When the
errors of directional data are on the average very small,
then the cost function (9) is approximately (6 — ¢)? .
Consequently, the dispersion is equal to the mean-square
error whenever the phase measurement is sufficiently ac-
curate. Moreover, the dispersion is also invariant respec-
tive to the phase-shift transformation, as expected. Let
us specify the relation between dispersion and peak like-
lihood. The existence of the state (8) shows that the up-
per limit of peak likelihood need not be relevant to the
phase resolution. The physical justification is the follow-
ing: the height of the PDF of the phase variable does
not imply any restrictions to its width, since such a peak
could be very narrow and therefore unimportant. But, on
the contrary, if a PDF with a certain width is assumed,
then this condition implies the existence of a minimal
value of the height of the PDF. Therefore, it is reasonable
to investigate the lower limit of peak likelihood or func-
tional f in expression (7), under the constraints of the
given width-dispersion (11) and condition of normaliza-
tion 3°°° ;22 = 1. The method of Lagrange multipliers
can be applied to this problem, yielding a difference equa-
tion with constant coefficients. For our purpose it is not
necessary to carry out all of these lengthy calculations,
since the value of fuin may be simply estimated for D
small, if we notice that the dispersion is the width of the
distribution and f2/2r is its height. The extremal PDF,
for which the height is minimal with respect to its width
could be easily concluded as the rectangular distribution

_ f2/27rv || < g,
Drect = 0’ q < I¢I S .
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The relations for small q follow as (e**) = sing/g and
D =~ q/+/3. The condition of normalization for  Pprect
then reads f2,,¢ = m, which implies, apart from an
unimportant constant multiplier, the relation

2. D~w/V3~1.

The rectangular PDF represents an ultimate limit, which
can be approximated but not achieved due to the
number-ket causality [3], a consequence of the Paley-
Wiener theorem. The Gaussian PDF’s well approximate
this limiting shape, since

f2auss % 2V7K, D = A¢ ~1/2VE),
and therefore
féauss D = ﬁ’

K being N (N?) for homodyne (TCS heterodyne) detec-
tions [3,5]. Thus we heuristically conclude the estimation

f* 2 fan ~1/D, (12)

which resembles an uncertainty relation between phase
and its canonically conjugated quantity. Therefore, the
peak likelihood seems to be relevant to the photon-
number variance.

This viewpoint may be supported by exact calcula-
tions. For this purpose, the number-phase uncertainty
relation derived by Shapiro and Shepard [3] may be ex-
ploited. They found, using the phase representation, the
relation

(AN)?(A)? > [2mp(m, |v)) — 1] (13)

where p(¢, |4)) = |®(e*#)|?/2m and photon-number vari-
ance may be simply expressed in the phase representation

as
a_ [T d¢
(AN) —/ 5

d®'(ei) |?

d¢

’

-7

where ®’(e%?) = ®(e'?)e*N?¢. Let us suppose without loss
of generality that the maximum peak likelihood of the
PDF p(¢, |¢)) is at the origin ¢ = 0. The desired result
can be easily obtained, if we specify the new phase wave
function as

B (e?) = @(eHT), (14)

i.e., if we simply shift the maximum peak likelihood of
the new PDF p, (¢, |¥n)) = |®.(e*%)|2/27 to the points
—mr, . This manipulation evidently does not change the
moments of the photon-number operator. The inequality
(13) for the quantum state |1,) with the new (shifted)
phase wave function ®,(e*®) then has the form

(AN)2(A¢n)? > 1/4[f% —1]2, (15)

since the photon-number variance is invariant with re-
spect to the phase-shift transformation. On the contrary,
the mean-square error is not invariant and can be esti-
mated as [6]

App, < .
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This implies the desired relation between photon-number
variance and peak likelihood

(AN)? > [(f2 - 1)/2n)?. (16)

The difference between peak likelihood and the back-
ground noise 1/27 estimates the lower bound of the
photon-number noise. This result may be further simpli-
fied for large peak likelihoods as the uncertainty relation

AN §¢ > 1. 17)

The variational formulation makes it possible to ap-
preciate the lower bounds of the inequality (16) with
better accuracy. The extremalization of the peak like-
lihood under the constraints of a given photon number
and photon-number variance tends to the specification of
the extremal states with number-ket decomposition

A

= ———, 18
n2+pn+r (18)

Tn
A, p, and r being Lagrange multipliers. This treatment
clarifies the meaning of the extremal states discussed
in Refs. [2-4]—they yield the extremal photon-number
noise, but not necessarily phase noise.
Let us also notice that the relations (12) and (17) imply
the inequality

(AN)?D? > 1/(2m)2

This estimation may be compared with the Heisenberg
uncertainty relation following from the commutation rule
[, Asg] = —4sa,

(AN)2D?* > 1/4[1 — D?.

The former inequality provides a less effective estimation
than the latter one, since the equality signs in (12) and
(17) do not occur simultaneously.

We have dealt with the problem of ideal phase mea-
surement using the SG phase concept. Nevertheless,
the same conclusions are valid also for the Pegg-Barnett
phase concept representing an alternative but physically
equivalent treatment [7]. The dispersion was shown to
be the only well-behaved performance measure of the
phase variable. The small value of dispersion implies
a reciprocal peak likelihood at least of the order 1/D
but not vice versa; a high reciprocal peak likelihood does
not necessarily restrict the value of dispersion. On the
other hand, the peak likelihood of the PDF associated
with the ideal phase measurement estimates the lower
bound of photon-number noise. The quantum state with
infinite peak likelihood and zero information about the
phase shift explicitly demonstrates the nonequivalence
of reciprocal peak likelihood and dispersion as perfor-
mance measures of phase. Moreover, this state belongs
to the broader class of states, which minimize the photon-
number noise under the constraint of a given peak like-
lihood. The knowledge of the PDF of phase measure-
ment using the ideal phase concept allows us not only
to specify the statistics of the phase variable, but also to
conclude the minimum possible noise of the photon num-
ber. Quantum estimation theory establishes the primacy
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of the ideal phase operator, since it represents the min-
imum dispersion and maximum peak likelihood estima-
tor. The physical interpretation of the former property is
clear—it means that for a given quantum state the ideal
phase measurement provides the most accurate informa-
tion about the phase shift compared to other phase con-
cepts. Nevertheless, the latter question—how to inter-
pret the maximum likelihood—has remained open. The
main result of this contribution, inequality (16), indi-
cates that the explanation has to be found within the
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framework of the photon-number measurement. Let us
conclude therefore that even if the ideal phase measure-
ment seems to be the highly formal and yet not the feasi-
ble phase concept, it represents the most accurate phase
measurement, including also some piece of information
about the canonically conjugated variable.
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