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The polariton Hamiltonian for a quantum well embedded in a cavity of finite width is derived.
The exciton-light interaction is formulated in second quantization and the photon self-interaction
term A? is included. The importance of the A% term turns out to be relevant in the case of large
values of the cavity width. By solving the equation of motion the dispersion relations for upper
and lower polaritons are found. A comparison is made with existing measurements of polariton

absorption peaks.

I. INTRODUCTION

Polaritons in quantum wells (QW’s) have been the sub-
ject of many interesting studies in the last few years. In
a QW the breaking of the translational symmetry along
the z axis completely modifies the selection rules of the
interaction between excitons and photons with respect
to the bulk case. A QW exciton with a given in-plane
wave vector couples to a continuum of photon modes.
The in-plane component of the photon wave vector is
equal to that of the exciton while the z component can
assume all the possible values. Because of this peculiar-
ity of the coupling, one of the polariton modes turns out
to be a resonant mode with a radiative linewidth. Po-
laritons in QW’s have been the object of investigation
in the framework of both classical’ and quantum?:3 the-
ory. Recently the possibility of growing optical microcav-
ities led to the study of the effect of light confinement on
QW polaritons. A semiconductor microcavity is a planar
Fabry-Pérot whose mirrors are multilayer structures built
with alternating layers of two different refraction indexes
and the same thickness A/4, where A is the resonance
wavelength of the Fabry-Pérot. A structure of this kind,
called distributed Bragg reflector (DBR), presents a very
high reflectivity in a given frequency interval around the
resonance. The main difference between a DBR and a
common metallic mirror is the following: The DBR re-
flection coefficient for the electric field has a phase equal
to zero at the resonance, whereas for a metallic mirror
this phase is equal to 7. In other words standing waves
inside the DBR Fabry-Pérot present antinodes instead of
nodes at the cavity boundaries. In what follows we will
adopt the boundary conditions appropriate to describe
this feature. Another characteristic is the frequency de-
pendence of the reflection coefficient of a DBR. Since we
are mainly interested in the behavior of polaritons near
the resonance, we disregard this dependence.

As shown experimentally,®® this system shows fea-
tures, such as vacuum field Rabi oscillations, analogous to
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The limit of infinite cavity width is carried out and the known results for a
quantum well in an infinite medium are recovered.

those of atoms enclosed in cavities.®® The vacuum field
Rabi splitting in this case is interpreted as one aspect of
the polariton effect. Other features, like exciton center of
mass quantization, can be observed when the whole body
of the cavity is used as the optical active medium.'%1!
The main difference between atom and QW experiments
is the following: Light modes in semiconductor microcav-
ities are confined only in one dimension, whereas in the
other two dimensions the microcavity has full transla-
tional symmetry. As already mentioned, interaction will
be possible only between excitons and cavity modes with
the same in-plane wave vector. Because of this selection
rule, excitons in an ideal lossless cavity are interacting
only with a discrete set of cavity modes. This repro-
duces the same situation as in experiments with atoms,
where particular cavity geometries had to be used for
this purpose. The study of this kind of confined sys-
tem is very interesting, both from the point of view of
the possible technological developments, and from that of
theoretical and experimental investigation of some pecu-
liar aspects of quantum mechanics, including controlled
spontaneous emission, and quantum nondemolition mea-
surements. These issues are part of the theory known as
cavity quantum electrodynamics (CQED).12

In this paper we present a theoretical investigation of
the polaritons in a QW enclosed in a microcavity with
perfectly reflecting walls, implying only discrete cavity
modes. This idealization is justified because of the high
finesse achieved in the experimental setup.> The whole
analysis is carried out in the framework of second quan-
tization and the photon self-interaction term AZ2 is in-
cluded in the Hamiltonian. In Sec. II we derive the form
of the Hamiltonian from a microscopical model including
the main features of the exciton system. Without losing
any generality, we will consider only a single polarization
for light modes, namely, the polarization orthogonal to
the z axis, as well as a single exciton mode. Moreover,
the cavity here will be considered as lossless, the cavity
modes being discrete modes with zero linewidth. The
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microscopical model considered here for the exciton con-
tains only its essential features. The exciton confinement
function is taken to be zero outside the QW and constant
inside. This assumption does not bring any significant
change in the dispersion relations when the cavity width
is comparable with the exciton wavelength or larger. Fur-
thermore, the exciton dispersion is neglected. In Sec. III
we will derive the dispersion relations for the polariton
modes. A comparison with existing experimental data is
carried out and a satisfactory agreement is found. The
importance of the A2 term, neglected in Ref. 13, is dis-
cussed in detail. In a QW there exist two different types
of polariton modes which are called resonance and sur-
face polaritons.! However, when the QW is confined in
an ideal lossless cavity with only discrete light modes, the
resonant behavior characterizing resonance polaritons in
a free QW is not present, both polariton modes having
zero radiative linewidth. Therefore these modes will be
denoted as upper and lower polaritons, respectively, in
analogy with bulk polaritons. Carrying out the limit of
an infinite cavity the behavior of the QW in an infinite
dielectric medium® can be recovered. The method to per-
form such a limiting process is devised in Sec. IV. In Sec.
V a discussion of the results and of their implications is
presented.

II. POLARITON HAMILTONIAN

We consider the system of a QW of thickness L placed
at the center of a slab of dielectric material of thickness L’
which constitutes the microcavity. We stress on the fact
that the whole system keeps the translational invariance
along the plane orthogonal to the z direction. Further-
more, we disregard any dispersive behavior of the mi-
crocavity, taking into account only its dielectric constant
€9. In the approximation in which only one conduction
and one valence band are considered and the spin is ne-
glected, an exciton state with an in-plane wave vector k
is given by

t
|®x) = ZA(kT’k)CLT+Tjkd—kT+%}‘k|0)’ (1)
kr

where M = m, + my, and ¢! is the creation operator for
a conduction electron, while d! is the creation operator
for a hole in the valence band. A(kr,k) is the Fourier
transform of the exciton envelope function Fix(p) where
p is the in-plane displacement vector. In particular we

have
J

——‘/1—§ Z A(kT,k) = Fk(o)’ (2)
kr

where S is the normalization surface.
The states CL d;f(z |0) are given by Slater determinants

where the conduction wave function qSl(fl) (x) replaces the

valence wave function ¢(_vl)(2 (x) in the Slater determinant

corresponding to the full valence band. Furthermore, the
electron wave functions can be written in the envelope
function approximation as
, exp(ik - p
K90 = L o, )

where f(, ¢)(2) is the envelope function in the z direction
and u(y ¢)(x) is a Bloch function taken at the I' point in
the Brillouin zone.

Let us now consider the interaction Hamiltonian in the
form

2
e e 2
HIZ_;n—c : A(xi)'Pi-l-WZi:A (x4), (4)
1
where the sum is over the electrons of the system and x; is
the three-dimensional displacement vector, namely, x; =
(p;,2:). We begin by writing in second quantization form
the first term on the right hand side of (4) which we will
call H}l). The most general form for this Hamiltonian,
when a nonlocal potential is present in the electron one-
particle Hamiltonian, is'*

1 €
H) = -~ 3 Axi) - vi, (5)
where v; is the ith electron velocity and the relation

1
V= i—h[xiy Hexc] (6)

is valid. Here H.y. denotes the exciton Hamiltonian.

We consider only light polarized orthogonally to the z
direction and we let the electric field amplitude be max-
imum at the cavity walls. This choice of boundary con-
ditions, as already mentioned, allows to compare our re-
sults with the available experimental ones. Furthermore,
we consider only even modes because, due to the parity
selection rule, these are the only ones which couple with
the exciton ground state. In this way the z dependence
of the electromagnetic modes will be given by the fac-
tor cos(q,z) where g, = 2nm /L' and n takes any integer
value in the range [—o0, +0].

The expression for the vector potential A in second
quantization form will then be

2mhv . .
A(x) = Z 1/ W[A‘ll’q‘ exp(iq - p) + A}qu exp(—iq - p)] cos(g.2z)€q,q, - (7N
9,9z

In this expresion q is the in-plane wave vector for the
electromagnetic field and v = ¢/,/€p. In order to write
the Hamiltonian (5) in second quantization form we de-
fine A2, AiT as the annihilation and creation operators
for an exciton with given in—plane wave vector k, respec-

[
tively. We can write the Hamiltonian as

HY =-%" ((OIE D A(x)-vil®k) AR + He ) :
k z
8)
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The operators AZ, Alz‘f obey Bose commutation rules
which as is well known implies a low excitation regime.

At this point it is enough to substitute Eqgs. (6) and
(7) into (8) and to write the exciton states as linear
combinations of Slater determinants using (3). Intro-
ducing the dipole approximation and making the further
assumption that the confinement function p(z), defined
as p(z) = fs(2)fc(2), is approximately constant over a
Brillouin zone, after somewhat lengthy calculations it is
a straightforward matter to obtain the final form for H }1):

HY =Y iCqq, (A% — AZ) (AL, +4M, ), (9)

9,9z

with

w, 2mwhv 1
C = _‘11/ - - )
q,9: c I (q2 n qf)% Fq(O)Hcv(q.’ qz)I(q:.)
(10)

In this expression wq = Eq/h is the exciton dispersion,
Bev(Q,9.) = e(v|€q,q, - X|c) is the dipole matrix element
between valence and conduction band, Fg(0) is given by
(2), and

'

T

I(g.) = / . p(z) exp(ig,z)d=. (11)
-3

To determine the expression of the A% term in (4) we

proceed as follows. The most general form for the second

term on the right hand side of (4) is'*

2
2 1l e
H} ) = ﬂ;’f : [A(X,) . xi,A(X,’) . Vi]. (12)
1

To get expression (12) in second quantization form it is
enough to take the expectation value over the exciton
vacuum state. By introducing a sum over all the exciton
states and using relation (6) we obtain

2

HP = S (0] S AR - xil@w) % (13)
k 1

The quantity (0] Y, A(x;) - x;|®x) can be worked out as
before. We finally get

(2) _ 1t
Hy” = Z Z Dg,q..q,(Aqq. + 474 4.)
a 9q:.9;

x (Al—qw—q; + Acl;,rq', ), (14)

where Dgq 4. o' can be expressed in terms of the coeffi-
cients (10) as

*
CQr‘Iz

q,9;
Dq,q. an = Ao . (15)
q

The whole Hamiltonian for the system given by radiation
in interaction with the exciton field is thus the following:

H=Y hunAll A2+ hwlq +q.2)4Ll, AL,
k q,9:

+H + HP. (16)
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III. DISPERSION RELATIONS

In this section we derive the dispersion relations for
upper and lower polaritons starting from the Hamiltonian
(16). We define for this purpose the polariton operators

Bq = E W(q, qZ)A}qu + X(q)Ai +E Y(q, qz)Al—Tqy—q,

q9: qz

2t
+Z(q)A_q.

(17)

The coefficients of the above expansion are chosen such
that the Hamiltonian is diagonal in the Bq operators:

[Bq, H] = EBq. (18)

We substitute (17) and (16) in Eq. (18) and expand in
terms of A, Alf, A% A2 operators. By equating the
coefficients corresponding to the same operator on the
left and right hand sides, we get a system of equations
which determine the coefficients in (17). The condition
for this system to have solutions reduces to the following
equation:

(hwg)? — E? = 4E* hv/q% + ¢2|Cq,q. | (19)
" hwq 2= W% (q? + g2) - BT
which is the dispersion relation we were looking for. It is
important to remark that, in contrast to the bulk case,
in (19) a sum over ¢, appears. The sum in (19) can be
exploited analytically if we choose for the confinement
function p(z) a step function with values 1/L inside the
QW and zero outside. This simplification is reasonable
for a cavity width L’ of the order of the wavelength cor-
responding to the exciton transition energy. In this case
the electromagnetic modes interacting with the exciton
will be with good approximation flat in the QW region,
thus justifying the choice for p(z). In addition we disre-
gard the exciton dispersion, thus putting wq = wo. Then,
for the upper polariton modes, for which E > Avq, we get

2 ! L
wi-1= 'yw— koLoa + 2 cot k0£a sin? [ kg=a
al 2 2

—sin(koLa) } (20)

In this expression we have introduced an effective inter-
action constant defined as

v [uPIFO)? 1

— 21
TEAT T (keL)? (21)

and the following normalized variables: w = E /hwo, ko =
wo/v, and a = 4/|w? — ¢2/kZ|. In (21) we disregard the
q dependence of the exciton envelope function and of the
dipole matrix element.

The analogous expression for the lower polariton mode,
where E < hvgq, is given by
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2 ’
wi-1= —'yg—g{koLa + 2coth (ko%a) sinh? (koga)

— sinh (ko La) } (22)

We plot the dispersion curves obtained from Egs. (20)
and (22) with a realistic choice of the parameters in
Fig. 1. The curves on the left of the o = 0 line are solu-
tions of the upper polariton dispersion relation (20) while
the curve on the right of the same line is the solution of
the lower polariton dispersion relation (22). Where the
exciton dispersion is resonant with one cavity mode the
polariton dispersion curves show the typical anticrossing
due to the interaction. This is visualized in the inset of
Fig. 1.

With the model it is possible to fit the experimen-
tal data obtained by Weisbuch et al* In that paper a
Aly.2Gag gAs semiconductor microcavity was built, with
five 76-A GaAs QW’s at its center. The geometry of the
cavity is such that the thickness can be varied around
the value corresponding to the exciton wavelength. The
use of more than one QW allows to obtain a stronger
interaction between excitons and cavity modes, because
vacuum field Rabi splitting can be observed only in the
strong interaction regime.!? It can be shown that, under
the assumption that each QW experiences the same elec-
tric field inside the cavity, the only change needed is a
factor N multiplying (21), N being the number of QW'’s.
Actually this assumption is not exactly verified in the
experimental setup we are considering, since the array
of QW’s is not much smaller than the cavity thickness.
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FIG. 1. Dispersion of polariton modes as obtained from
Eqgs. (20) and (22). The dashed line represents the o = 0
line. Here ko = wo/v. In the inset a detail containing
the anticrossing point is shown. Material parameters ap-
propriate to a GaAs/Alp.2Gag.sAs QW and the cavity width
L' = 2.93 x 10~° cm are used.
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This introduces an arbitrary factor in (21) that can be
considered as an effective number of QW’s smaller than
N. Furthermore, the actual width of the cavity modes,
not included in this model, will lower the interaction with
respect to the one predicted by (21). For these reasons we
prefer to use v as a free parameter for making a fit of the
experimental data. For this purpose we choose the follow-
ing values for the other parameters: Awo = 1.586 eV, and
€0 = 12.0. We calculate polariton energies for q =0 as a
function of the detuning of the cavity, namely, of L'. The
theoretical curves, compared to the experimental data in
Ref. 4 are shown in Fig. 2. The value obtained for the
constant, ¥ = 8.2 x 1074, can be interpreted in terms of
oscillator strength for the exciton and effective number
of QW’s. The following relation! is valid:

|lue 2[F(O)? _ _fe?

= 2
h 2muwy’ (23)

where f is the oscillator strength per unit surface of the
exciton. The result obtained from the fit would corre-
spond to an oscillator strength f = 3 x 10*2 cm~2, in
very good agreement with theoretical predictions,'® and
to an effective QW’s number of 1.04. This last result
is reasonable in the light of the two effects mentioned
above.

As a concluding remark of this section we would like
to stress the role of the A2 term in the calculation. The
results analogous to the ones obtained in this work, but
without the A? term, are already known.!? In particular
Egs. (20) and (22) are still valid except that the w?
factor multiplying the right hand side is missing. The
absence of this factor is determinant in the limit of large
L'. If we look at the behavior of the lower branch, we
can see that there is a finite value of L’ for which this
branch starts exactly from the origin of the dispersion
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FIG. 2. Comparison between the experimental points from
Ref. 4 and the theoretical results for the polariton frequency
at q = 0 as a function of the cavity detuning. The energy on
the vertical axis is taken with respect to the exciton energy
Fwo. Material parameters are specified in the text.
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plane. This would mean that a mode with zero energy
exists in a confined system. Anyway, for such a system,
we always expect a positive energy as a consequence of
the confinement. With Egs. (20) and (22), including the
w? factor, the correct behavior is recovered and the lower
branch starting point approaches zero for L' — oo as can
be easily verified.

IV. LIMIT OF A LARGE CAVITY

In this section we investigate the limit of a large cavity,
when the cavity modes become closer to each other. The
results will allow a comparison with those obtained both
classically! and quantum mechanically.?3-16

Let us pay attention to the dispersion equation (20) in
the case of large cavity. There are no problems with the
lower polariton branch, because the only L’ dependence

in (22) appears in the function coth (ko %’a) which tends

to one when L' — oco. Consequently, in this limit, the
dispersion relation for the lower polariton branch reads

2
Wi 1= _7% {koLa 1+ e“k"L")} . (24)

This expression is identical to the classical result of Tas-
sone et al.! calculated on the basis of the scattering the-
ory. In this limit the starting point of the lower polariton
curve in Fig. 3 moves towards the origin of the dispersion
plane and the usual lower polariton curve is obtained.
To obtain the quantum counterpart of this result for
upper polariton branches, a more careful treatment is
necessary. There are several branches corresponding to
different solutions of the dispersion relation (20), and

1.01 ' ™ T
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96

094 0. 0.98
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0.0 0.2 0.4 0.6 0.8 1.0

a/k,

FIG. 3. The polariton dispersion curves in the case of a
large cavity (L' = 6.3 x 10™* cm). The inset shows a detail
of the region close to the w = wo line. Material parameters
as in Fig. 1.

when L’ — oo, the set of branches in the upper half
plane becomes dense. Nevertheless, the curves are not
distributed uniformly and therefore a set of points with
the highest concentration of upper polariton branches
can be identified. This situation is depicted in Fig. 3.
Let us discuss this point in terms of a density of states.

All the upper polariton curves may be advantageously
parametrized using the variable a. The parametrization
of the frequency w is given using (20) as

! L
1- ls{koLa + 2 cot (k0£a> sin? (ko——a)
«a 2 2

—sin(koLa) }} Al. (25)

w2=

The other variable ¢ may be simply determined from the
definition of « as

2 ! L
k—g = [ — %{koLa+ 2 cot (ko%a) sin® (k()'z—a)

-1

Q

- sin(koLa)} - a?. (26)

The range of definition of the parameter o is deter-
mined by the condition g > 0. Let us specify the density
of states. Assuming the isotropic model, the differential
element corresponding to the two-dimensional vector q
may be expressed as

dq?
2wqdq = m—dw;
wqaq dw; 5
where w; represents a given upper polariton branch. Con-
sequently, the density of states may be specified along
each branch as
7w dg?
D;=—5—. 27
I k(z) dw]- ( )
We look for the point on each branch, in which the den-
sity of states D; is maximum. Such points can be visual-
ized as inflection points on the different dispersion curves.
Assuming L' finite but sufficiently large, the main contri-
bution to the density of states may be explicitly specified
as
m dqu-

= 2 omw; |14
77 k2 du “”[

4a }
Fw;‘-’koL'[l + cot? (kg%a)] ’
(28)
where the coefficient I' is defined as
2 2 2
v || IQ(O)I % (k:L)Z sin? <k0§a> _
In the derivation of (28) we used the fact that only the

function cot | ko -"2—'(1) is changing significantly on each

I' =16n

branch while all the other contributions may be ne-
glected.
Using the dispersion relation (20) to express the term
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cot? (ko %'a) , the density of states may be rewritten in
the form

4a r

Fhrtrrr| 9

Dj,approx = 27!'(4)]' |:1 +

where

2
F=w?-1- % {koLa —sin(koLa)} .

As long as L' is kept finite, the density of states is
defined only on a finite set of curves. Points where the
density of states has a maximum are located along the
classical resonance curve F = 0 independently of the
scale of the cavity. The density of states is given by the
Lorentzian profile of width corresponding to the classi-
cal resonance broadening. We conclude therefore that
the lower polariton solution predicted by the the clas-
sical theory coincides with the one given in this paper
for L' — oo. Moreover, the upper polariton branch pre-
dicted by the classical theory represents the common en-
velope of many dispersion curves existing inside the cav-

ity.

V. CONCLUSIONS

In this paper we investigated the interaction of light
with an exciton mode in a system formed by a QW placed
inside a microcavity. A general form for the Hamiltonian
has been derived using a microscopical model, including
the A% term. The main difference between the system
here considered and the one of a free QW is that here,
due to the confinement of light, the interaction with ex-
citons in the QW is much stronger, the polariton effects
thus being enhanced. A comparison with existing ex-
perimental data* has been made and the agreement is
satisfactory. Moreover, we have shown in the last sec-
tion how the well known results for a QW in an infinite
medium are recovered by carrying out the limit of a very
large cavity.
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