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Maximum-likelihood estimation of quantum processes
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Maximume-likelihood estimation is applied to identification of an unknown quantum-mechanical process. In
contrast to linear reconstruction schemes, the proposed approach always yields physically sensible results. Its
feasibility is demonstrated by performing the Monte Carlo simulations for the two-level sysieghe qubij.
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During recent years a great deal of attention has been The estimation of the eIemenstikjI by means of linear
devoted to theneasurement of the quantum stafevarious  algorithms has been addressed in several pdfersl]. The
simple quantum-mechanical systems. All proposed reconappropriate quantum-state reconstruction technique is em-
struction techniques follow the common underlying strategyployed to estimate the output stat@gf]t) corresponding to
a set of measurements is performed on many identically preseveral different input states™ , and the unknown param-
pared copies of the quantum state that is then estimated fm@{ersgikj' in Eq. (1) are then obtained by solving the system

the collected data. Feasible reconstruction schemes were dgr jinear equations. This linear reconstruction procedure is
vised for a wide variety of systems including the modes ofgimhie and straightforward, but it suffers from one signifi-

running electromagnetic fiel@optical homodyne tomogra- cant drawback. The elemen@X are estimated as a set of
phy [1,2] and unbalanced homodynin§]), cavity electro- seemingly unrelated number:gfj Howev@f‘-' cannot be arbi-
' I

magnetic field 4,5], motional state of the ion in a Paul trap trary because the linear mappiggmust preserve the posi-

[6], vibrational state of the molecu[&], and spin[8]. ) SN . i
These significant achievements stimulated the developt—'ve s_gmldgflnlteness and trace of the density matrix. These
onditions impose bounds on the allowed valuegﬁ'f. In

ment of a new remarkable branch of the reconstruction techZ° _ o .
niques that allow for the experimental determination of thethis Rapid _Communication the superoperaﬁ)ns recon-
unknown quantum-mechanical processi@-14). This is of structed using ma>_<|mum—l|kel|hooﬂJIL), wh_lch allows the
great practical importance because such a technique may Bgtural incorporation of all the constraints of quantum

used to experimentally evaluate the performance of the twotheory. Since one can only collect a finite amount of data, the

bit quantum gate—a building block of quantum computers!N€ar mapping cannot be determined exactly. In accordance
[9]. The usual setup considered also in this paper is shown %‘th the probabilistic interpretation of the quantum theory,
Fig. 1. The input state prepared by an experimentalist an{'¢ ML estimation answers the quest@whlch process 1s
characterized by a density matgx, enters the “black box” most I'ke|Y to y|e!d thg measured dgta’?' . .
where it is transformed into the outpat,;. The task for the Due to its nonlinearity, J.[he ML estimation 1S computation-
experimentalist is to retrieve information on the physical@lly @ much more expensive task than the linear procedures.

process hidden in the black box from the measurements o-rl;his is the prize for_the physi(_;ally sound result. ML estima-
the output stateg ., obtained from various input states, . tion has been applied to various problems recently: to the

T st on o gt et he appefleUenets o e o pe o8 s
=G0, is linear, as dictated by the linearity of quantum . o
Qou=50in y yorg [16], and the parameters of the quantum-optical Hamiltonian

mechanics, . : .
[17]. Reconstruction of the generic quantum state using the
ML estimation and its interpretation as quantum measure-
Qout,ijzz Qikj'Qin,kl- (1) ment hgs been proposed [ih8]. Subsequent Monte Carlo
Kl simulations performed for the quantum states of electromag-
Hereg;;=(i|e|j) are density matrix elements in some com- Black box

plete orthogonal basis of states spanning the Hilbert space on
which the density operat@r acts. As illustrated in Fig. 1, the
system may be entangled with the environment and the trans-
formation G need not preserve the purity of the state. The
Green superoperat@f can describe a diverse variety of the
physical processes, such as unitary evolution, damping, and
decoherence. From the reconstructed superopetatone
may further estimate the Liouville superoperaiyr which
governs the evolution of the density matrix in the black box

Environment

FIG. 1. Sketch of experimental setup for determination of the
'quantum-mechanical process. The input stafeis prepared in the

e="Lo. _|f the _ SUpeerera_tOIC exists, t_heng_: exp(ﬁr), preparatoiP and enters the black box where it is transformed to the
where 7 is the interaction time, and an inversion of this re- output stateo = Goi,, which may be entangled with the environ-
lation yields £ [11,12. ment. The detectdd measures some observable of the outpyt.

1050-2947/2001/62)/0201014)/$15.00 63 020101-1 ©2001 The American Physical Society



RAPID COMMUNICATIONS

JAROMIR FIURASEK AND ZDENEK HRADIL PHYSICAL REVIEW A 63 020101R)

netic field modes and spiri9-21 illustrated the feasibility etrized byN* real numbers, but the conditi¢d) imposesN?
of this technique. Here we shall demonstrate that the MLlreal constraints so that the number of independent param-
estimation is also suitable for determination of the generieters reads\*—N2. The relation betweep( and G can be
guantum-mechanical processes. found by comparing Eqg1) and(7), g = Xin+kjn+1, and

The sought after superoperatpcan be determined as the the constraint§4) can be equivalently written as
superoperator maximizing a likelihood functidij G]. The
measurements performed on the output st@t&'ﬁ can be 2 G-
described by positive-operator-valued measufBOVM) it =
1M If the experimental data contamdifferent combina-
tions Of detected POVMLI(™ and corresponding input The minimal parametrization can easily be achieved if one
statesgm , m=1,...n, then[G] reads makes use of Eq(9) and expresseB\I2 real parameters in

terms of the remainingy*—N? ones.
To provide an explicit example, let us consider a two-

©)

E[g]:ngl (TrIM QSR m level systen{single qubit. The matrixy can be expressed in
terms ofg!j-' as follows:
n fm
=11 (% H‘m>g,.e.(rﬁ“&|) : ) g% ¢ 68 ¢
, , o Goo Goo Go1 Yo
where f,, is the (relative frequency of the combination X=| goo gor goo goils (10
(e{™ 11M) in the data. The maximum of the likelihood 10 uo¥i
function should be found in the domain of physically al- G Gis GiN Gii

lowed superoperator§, whose determination is crucial for
the successful implementation of the ML estimation. Theand the constraintéd) yield G§1= 6,— G&p. Thus x is pa-
linear positive map(1) can be conveniently cast into the rametrized by 16 4=12 real parameters that can be col-
form that explicitly preserves the positive semidefinitness ofected in a vector
the density matriX10], ~
G=(G0.G46-ReG5,ImG 5, ReG 30, ImGg?,
Qou= 2 AiCiA! (3 ReGX ImG¥ Reg% ImGY,Reg it ImgLt
. 11
It follows from the condition Tip,,=1 that
Note thatg:j-'=(g}=‘)* since y is Hermitian. The positive
> Afa=1, (4  semidefiniteness of the matrit0) can be easily checked for

eachg where the likelihood functioii2) is evaluated. If the

matrix y is not positive semidefinite, then one may simply
wherel denotes the identity operator. Further we can expantil)ut £[G]=0. The maximum ofZ can be found for example

A; in some complete operator baﬂ;s with the help of the downhill-simplex algorithm. In the case
of a two-level system it is sufficient to search for the maxi-
A= z ci,ﬁ- ' (5) mum in the finite volume subspace of 12-dimensional space.

Alternatively, one can find the maximum dff G] from
the extremum condition. It is convenient to work with the

If we deal with theN level systenti), i=0, ... N—1, then  |og-likelinood function. The constraint§) must be incorpo-

it is natural to choose thi” basis operators as rated by introducingN? (compley Lagrange multipliers
~ T Amn=Ahm- Assume first that the maximum a@¥[G] is lo-
Ani+j =il 1,j=0,... N-1. (6)  cated inside the domain of physical superoperaghreence

all eigenvalues of the estimated are positive. The extre-

Inserting Eq.(5) into Eq. (3), we find that mum conditions then read

Qou= 2 XjkAjCinAL, (7)
our™ 44 XjkA; Cinfk agk' In£[G]— 2 )\mnE gol=0. (12)
where !
On inserting the explicit expression for the likelihood func-
. tion (2) into Eg.(12) one obtains
XJk:Ei cicl, J.k=0,... N?~1, 8) @ a.(12)

Thusy is a positive semidefinite Hermitian matfi0]. This
is the desired condition revealing a domain of the allowed
parametersg; }‘j' (or alternativelyy;;). The matrixy is param-  where we have introduced
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() A Ty (m) - Since all the traces are equal to 1, this relation reads in the
Pm=Tr ZI Aigi AT =Tr(II"™Ge").  (14)  operator form
As follows from Eq.(13), \ is a positive definite Hermitian 2 f—mH(m)=| 21)
matrix. Equation(12) may be rewritten to the form suitable m Pm '
for iterative solution. Multiplying Eq.(13) by ()Cl)mg',;’g
and summing ovea,k,|, one gets which is the closure relation for renormalized positive-
f valued-operator measureg (™ = (f,/p,)II(™. Moreover,
np_ N Im (M) (M) (y —1y ~kp in spite of the fact that the exact agreement between theoret-
g % Pm §| Mpa'@in k(A G ac- (15 ical probabilitiesp,, and measured relative frequenciges

(assumed by standard reconstructjorennot be achieved in
The convenient form of Lagrange multiplieks,,, may be general, the probabilities obtained from the renormalized

found by inserting Eq(15) into Eq. (9), POVMsII'(M are identical tof ,,
f |
=N m (m@pi H(m) / / _
Aij % P a%p e’ Gakin,p; - (16) pn=Tr EI: AiQi(r:n)AiTH M I=f. (22

Notice that TA=2j;=2nfm=1. The system of nonlin- s jicares the privileged role of ML estimation in anal-

gg;vee%:rt:g nislj)\/:gdb(lezefoéaizg (iatlggﬁgri Ogt;r‘;?] b?rom()gy with the quantum state estimatifh8]. ML estimation
Kl o1 y y rep L 9 represents a genuine quantum measurement. Properties of a
Gij =N""6;; 6, and keeping only the Hermitian part Gfat

. ; quantum black box are determined using the closure relation
each iteration step. _ (21) for a POVM, expectation values of which are the regis-
LetTUS now formulate the theory in terms of the operatorSe e gata(22). Since the data are noisy, in general, this
Ai, Ai. It is helpful to define a Hermitian operatot  cannot be done using the linear algorithm of standard recon-
=3 A mnlM)(N|. The maximum of log-likelihood function gt ction schemes.
can be formally found as the relation In the rest of the paper we demonstrate the feasibility of
our approach by means of Monte Carlo simulations for two-
» ATA_D -0 17) level system(a single qubit We shall consider the spin-1/2
T system. The detect® shown in Fig. 1 is the Stern-Gerlach
apparatus measuring the spin projections along one of three
On performing the differentiation with respect m’r and axesx,y, z We further assume that, is prepared in one of
solving for A;, we obtain six eigenstate§] ), || ;) of the spin projectorg¢Pauli matri-
ces oy, j=xy,z, ai|1))=[1j), and oj|[))=—[l;). We
choose the basif))=||,) and|1)=|1,). Each of the six
input states is preparedA\Btimes. At the output, one mea-
sures\ times the spin along each of the three axeg,z.
The validity range of this formula includes the cases wheriThe corresponding six projectors reaHj=|j>(j|, ]
the maximum ofZ[ G] lies at the boundary of the domain of e{7,,|x.1y.ly.T2,l2}. Let fy denote the relative fre-
allowed superoperator§, where several eigenvalues gf

J
m(ln LI{A}]=Tr

f
A= p—mHWAiefﬁ”x‘l- (18)

m m

are zero and the corresponding eigenvectors, i.e., operators
A;, vanish. If we multiply Eq(18) from the left by operator
A, sum overi, and take into account the constrajdj, we 0.8l
find
0.6}
fin Gy
=2 2 ATTIMA e, (19 0.4}
m pm i

which is equivalent to Eq(16). Similarly, one can also de- 02 I_
rive Eq.(15) from Eq.(18). Since Eqgs(15) and(16) follow ot e ol T
from Eg. (18), they always provide correct and reliable esti- e ' e
mates. 1 2 3 45 6 7 8 9 10 1112

In the case when all eigenvalues of the estimatedre k

nonzero, the procedure of ML estimation may be interpreted g 2. Reconstructed dimensionless elements of the superop-
as a generalized measurement. To show this explicitly, let Usratorg plotted in the form of the vectd®. Bars correspond to the
calculate the trace of E13), ML estimation (black), linear inversion(gray), and exact values
f (hollow). Missing hollow bars indicate the zero true values. The
Tr7\5ab22 —mHE)”;) TrQi(nm)' (20) superoperator describes the process of damding;0.5 andl",
Pm =0.75, N=20.
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quency of projections to the stale) measured for the input tions of Eqgs.(15) and (16). For the total amount of 360
state|j). The likelihood function can be expressed as prod-measurements the ML estimatelack) is very close to the

uct of 36 terms, exact valueg; (hollow). Notice that the ML estimate always
provides a physically sound result contrary to the linear in-
_ N . version(gray).
E[g]_g (CKIGL k), 23 Properties of transforming systems are of interest in any
physical theory. The developed formalism shows how to
wherej, ke {1y, lx:Ty,ly:Tz: 12} identify a generic quantum-mechanical process. Quantum
In our simulations, the black box of Fig. 1 corresponds tosystems consisting of spins, two entangled or three entangled
the damping ofo;,, (GH2) qubits are tractable due to their low dimensionality.
r r However, a proper and full quantum description of possible
(17 Cina® I Qino® Tt transformations of such systems is more advanced, since
Qout™ Sk (24

Oin1cf 'L Qin1€ they are characterized by 12, 240, or even 4032 parameters.
Here 2", =I")=0 are transversal and longitudinal decay pa- This work was supported by Grant No. LNOOAOQ15 of the
rameters. The elements of the reconstructed superoperatGzech Ministry of Education. this paper is dedicated to the
are depicted in Fig. 2. The solution was obtained by itera65th birthday of Professor Jan .
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