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Maximum-likelihood estimation of quantum processes
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Maximum-likelihood estimation is applied to identification of an unknown quantum-mechanical process. In
contrast to linear reconstruction schemes, the proposed approach always yields physically sensible results. Its
feasibility is demonstrated by performing the Monte Carlo simulations for the two-level system~single qubit!.
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During recent years a great deal of attention has b
devoted to themeasurement of the quantum stateof various
simple quantum-mechanical systems. All proposed rec
struction techniques follow the common underlying strate
a set of measurements is performed on many identically
pared copies of the quantum state that is then estimated
the collected data. Feasible reconstruction schemes wer
vised for a wide variety of systems including the modes
running electromagnetic field~optical homodyne tomogra
phy @1,2# and unbalanced homodyning@3#!, cavity electro-
magnetic field@4,5#, motional state of the ion in a Paul tra
@6#, vibrational state of the molecule@7#, and spin@8#.

These significant achievements stimulated the deve
ment of a new remarkable branch of the reconstruction te
niques that allow for the experimental determination of
unknownquantum-mechanical processes@9–14#. This is of
great practical importance because such a technique ma
used to experimentally evaluate the performance of the t
bit quantum gate—a building block of quantum comput
@9#. The usual setup considered also in this paper is show
Fig. 1. The input state prepared by an experimentalist
characterized by a density matrix% in enters the ‘‘black box’’
where it is transformed into the output%out. The task for the
experimentalist is to retrieve information on the physic
process hidden in the black box from the measurements
the output states%out obtained from various input states% in .
The assumption taken for granted here is that the map
%out5G% in is linear, as dictated by the linearity of quantum
mechanics,

%out,i j 5(
kl

G i j
kl% in,kl . ~1!

Here% i j 5^ i u%u j & are density matrix elements in some com
plete orthogonal basis of states spanning the Hilbert spac
which the density operator% acts. As illustrated in Fig. 1, the
system may be entangled with the environment and the tr
formation G need not preserve the purity of the state. T
Green superoperatorG can describe a diverse variety of th
physical processes, such as unitary evolution, damping,
decoherence. From the reconstructed superoperatorG one
may further estimate the Liouville superoperatorL, which
governs the evolution of the density matrix in the black bo
%̇5L%. If the superoperatorL exists, thenG5exp(Lt),
wheret is the interaction time, and an inversion of this r
lation yieldsL @11,12#.
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The estimation of the elementsG i j
kl by means of linear

algorithms has been addressed in several papers@9–11#. The
appropriate quantum-state reconstruction technique is
ployed to estimate the output states%out

(m) corresponding to
several different input states% in

(m) , and the unknown param
etersG i j

kl in Eq. ~1! are then obtained by solving the syste
of linear equations. This linear reconstruction procedure
simple and straightforward, but it suffers from one signi
cant drawback. The elementsG i j

kl are estimated as a set o
seemingly unrelated numbers. However,G i j

kl cannot be arbi-
trary because the linear mappingG must preserve the posi
tive semidefiniteness and trace of the density matrix. Th
conditions impose bounds on the allowed values ofG i j

kl . In
this Rapid Communication the superoperatorG is recon-
structed using maximum-likelihood~ML !, which allows the
natural incorporation of all the constraints of quantu
theory. Since one can only collect a finite amount of data,
linear mapping cannot be determined exactly. In accorda
with the probabilistic interpretation of the quantum theo
the ML estimation answers the question,‘‘which process is
most likely to yield the measured data?’’

Due to its nonlinearity, the ML estimation is computatio
ally a much more expensive task than the linear procedu
This is the prize for the physically sound result. ML estim
tion has been applied to various problems recently: to
measurements of the quantum phase shift@15#, a coupling
constant between atom and a cavity electromagnetic fi
@16#, and the parameters of the quantum-optical Hamilton
@17#. Reconstruction of the generic quantum state using
ML estimation and its interpretation as quantum measu
ment has been proposed in@18#. Subsequent Monte Carlo
simulations performed for the quantum states of electrom

FIG. 1. Sketch of experimental setup for determination of
quantum-mechanical process. The input state% in is prepared in the
preparatorP and enters the black box where it is transformed to
output state%out5G% in , which may be entangled with the environ
ment. The detectorD measures some observable of the output%out .
©2001 The American Physical Society01-1
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netic field modes and spin@19–21# illustrated the feasibility
of this technique. Here we shall demonstrate that the
estimation is also suitable for determination of the gene
quantum-mechanical processes.

The sought after superoperatorG can be determined as th
superoperator maximizing a likelihood functionL@G#. The
measurements performed on the output states%out

(m) can be
described by positive-operator-valued measures~POVM!
P (m). If the experimental data containn different combina-
tions of detected POVMsP (m) and corresponding inpu
states% in

(m) , m51, . . . ,n, thenL@G# reads

L@G#5 )
m51

n

~Tr@P (m)%out
(m)# ! f m

5 )
m51

n S (
i jkl

P i j
(m)G j i

kl% in,kl
(m) D f m

, ~2!

where f m is the ~relative! frequency of the combination
(% in

(m) ,P (m)) in the data. The maximum of the likelihoo
function should be found in the domain of physically a
lowed superoperatorsG, whose determination is crucial fo
the successful implementation of the ML estimation. T
linear positive map~1! can be conveniently cast into th
form that explicitly preserves the positive semidefinitness
the density matrix@10#,

%out5(
i

Ai% inAi
† . ~3!

It follows from the condition Tr%out51 that

(
i

Ai
†Ai5I , ~4!

whereI denotes the identity operator. Further we can exp
Ai in some complete operator basisÃj ,

Ai5(
j

ci j Ã j . ~5!

If we deal with theN level systemu i &, i 50, . . . ,N21, then
it is natural to choose theN2 basis operators as

ÃNi1 j5u i &^ j u, i , j 50, . . . ,N21. ~6!

Inserting Eq.~5! into Eq. ~3!, we find that

%out5(
jk

x jkÃj% inÃk
† , ~7!

where

x jk5(
i

ci j cik* , j ,k50, . . . ,N221. ~8!

Thusx is a positive semidefinite Hermitian matrix@10#. This
is the desired condition revealing a domain of the allow
parametersG i j

kl ~or alternativelyx i j ). The matrixx is param-
02010
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etrized byN4 real numbers, but the condition~4! imposesN2

real constraints so that the number of independent par
eters readsN42N2. The relation betweenx and G can be
found by comparing Eqs.~1! and ~7!, G i j

kl5x iN1k, jN1 l , and
the constraints~4! can be equivalently written as

(
i

G i i
kl5dkl . ~9!

The minimal parametrization can easily be achieved if o
makes use of Eq.~9! and expressesN2 real parameters in
terms of the remainingN42N2 ones.

To provide an explicit example, let us consider a tw
level system~single qubit!. The matrixx can be expressed in
terms ofG i j

kl as follows:

x5S G 00
00 G 00

01 G 01
00 G 01

01

G 00
10 G 00

11 G 01
10 G 01

11

G 10
00 G 10

01 G 11
00 G 11

01

G 10
10 G 10

11 G 11
10 G 11

11

D , ~10!

and the constraints~4! yield G 11
kl 5dkl2G 00

kl . Thusx is pa-
rametrized by 1624512 real parameters that can be co
lected in a vector

GW 5~G 00
00,G 00

11,ReG 00
01,ImG 00

01,ReG 01
00,ImG 01

00,

ReG 01
10,ImG 01

10,ReG 01
01,ImG 01

01,ReG 01
11,ImG 01

11!.

~11!

Note thatG i j
kl5(G j i

lk)* since x is Hermitian. The positive
semidefiniteness of the matrix~10! can be easily checked fo
eachG where the likelihood function~2! is evaluated. If the
matrix x is not positive semidefinite, then one may simp
put L@G#50. The maximum ofL can be found for example
with the help of the downhill-simplex algorithm. In the cas
of a two-level system it is sufficient to search for the ma
mum in the finite volume subspace of 12-dimensional spa

Alternatively, one can find the maximum ofL@G# from
the extremum condition. It is convenient to work with th
log-likelihood function. The constraints~9! must be incorpo-
rated by introducingN2 ~complex! Lagrange multipliers
lmn5lnm* . Assume first that the maximum ofL@G# is lo-
cated inside the domain of physical superoperatorsG, hence
all eigenvalues of the estimatedx are positive. The extre-
mum conditions then read

]

]G i j
kl F ln L@G#2(

mn
lmn(

p
G pp

mnG50. ~12!

On inserting the explicit expression for the likelihood fun
tion ~2! into Eq. ~12! one obtains

lkldab5(
m

f m

pm
Pba

(m)% in,kl
(m) , ~13!

where we have introduced
1-2
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pm5TrF(
i

Ai% in
(m)Ai

†P (m)G5Tr~P (m)G% in
(m)!. ~14!

As follows from Eq.~13!, l is a positive definite Hermitian
matrix. Equation~12! may be rewritten to the form suitabl
for iterative solution. Multiplying Eq.~13! by (l21) lnG ac

kp

and summing overa,k,l , one gets

G bc
np5(

m

f m

pm
(
a,k,l

Pba
(m)% in,kl

(m) ~l21! lnG ac
kp . ~15!

The convenient form of Lagrange multiplierslmn may be
found by inserting Eq.~15! into Eq. ~9!,

l i j 5(
m

f m

pm
(

a,k,p
Pka

(m)G ak
pi % in,p j

(m) . ~16!

Notice that Trl[( jl j j 5(mf m51. The system of nonlin-
ear equations~15! and ~16! for the elements ofG can be
conveniently solved by repeated iterations, starting fr
G i j

kl5N21d i j dkl and keeping only the Hermitian part ofG at
each iteration step.

Let us now formulate the theory in terms of the operat
Ai , Ai

† . It is helpful to define a Hermitian operatorl
5(mnlmnum&^nu. The maximum of log-likelihood function
can be formally found as the relation

]

]Ai
† S ln L@$Aj%#2TrFl(

j
Aj

†Aj G D 50. ~17!

On performing the differentiation with respect toAi
† , and

solving for Ai , we obtain

Ai5(
m

f m

pm
P (m)Ai% in

(m)l21. ~18!

The validity range of this formula includes the cases wh
the maximum ofL@G# lies at the boundary of the domain o
allowed superoperatorsG, where several eigenvalues ofx
are zero and the corresponding eigenvectors, i.e., oper
Ai , vanish. If we multiply Eq.~18! from the left by operator
Ai

† , sum overi, and take into account the constraint~4!, we
find

l5(
m

f m

pm
(

i
Ai

†P (m)Ai% in
(m) , ~19!

which is equivalent to Eq.~16!. Similarly, one can also de
rive Eq. ~15! from Eq. ~18!. Since Eqs.~15! and~16! follow
from Eq. ~18!, they always provide correct and reliable es
mates.

In the case when all eigenvalues of the estimatedx are
nonzero, the procedure of ML estimation may be interpre
as a generalized measurement. To show this explicitly, le
calculate the trace of Eq.~13!,

Tr ldab5(
m

f m

pm
Pba

(m) Tr % in
(m) . ~20!
02010
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Since all the traces are equal to 1, this relation reads in
operator form

(
m

f m

pm
P (m)5I , ~21!

which is the closure relation for renormalized positiv
valued-operator measuresP8(m) 5( f m /pm)P (m). Moreover,
in spite of the fact that the exact agreement between theo
ical probabilitiespm and measured relative frequenciesf m
~assumed by standard reconstructions! cannot be achieved in
general, the probabilities obtained from the renormaliz
POVMs P8(m) are identical tof m ,

pm8 [TrF(
i

Ai% in
(m)Ai

†P8(m) G[ f m . ~22!

This indicates the privileged role of ML estimation in ana
ogy with the quantum state estimation@18#. ML estimation
represents a genuine quantum measurement. Properties
quantum black box are determined using the closure rela
~21! for a POVM, expectation values of which are the reg
tered data~22!. Since the data are noisy, in general, th
cannot be done using the linear algorithm of standard rec
struction schemes.

In the rest of the paper we demonstrate the feasibility
our approach by means of Monte Carlo simulations for tw
level system~a single qubit!. We shall consider the spin-1/
system. The detectorD shown in Fig. 1 is the Stern-Gerlac
apparatus measuring the spin projections along one of t
axesx, y, z. We further assume that% in is prepared in one of
six eigenstatesu↑ j&, u↓ j& of the spin projectors~Pauli matri-
ces! s j , j 5x,y,z, s j u↑ j&5u↑ j&, and s j u↓ j&52u↓ j&. We
choose the basisu0&5u↓z& and u1&5u↑z&. Each of the six
input states is prepared 3N times. At the output, one mea
suresN times the spin along each of the three axesx,y,z.
The corresponding six projectors readP j5u j &^ j u, j
P$↑x ,↓x ,↑y ,↓y ,↑z ,↓z%. Let f jk denote the relative fre-

FIG. 2. Reconstructed dimensionless elements of the supe

eratorG plotted in the form of the vectorGW . Bars correspond to the
ML estimation ~black!, linear inversion~gray!, and exact values
~hollow!. Missing hollow bars indicate the zero true values. T
superoperator describes the process of damping,G uu50.5 andG'

50.75, N520.
1-3
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quency of projections to the stateuk& measured for the inpu
stateu j &. The likelihood function can be expressed as pro
uct of 36 terms,

L@G#5)
j ,k

~^kuG@ u j &^ j u#uk&! f jk, ~23!

where j ,kP$↑x ,↓x ,↑y ,↓y ,↑z ,↓z%.
In our simulations, the black box of Fig. 1 corresponds

the damping of% in ,

%out5S 12% in,11e
2G uu % in,01e

2G'

% in,10e
2G' % in,11e

2G uu D . ~24!

Here 2G'>G uu>0 are transversal and longitudinal decay p
rameters. The elements of the reconstructed superope
are depicted in Fig. 2. The solution was obtained by ite
s
.

s.

er

,

tt
,

02010
-

-
tor
-

tions of Eqs.~15! and ~16!. For the total amount of 360
measurements the ML estimate~black! is very close to the
exact valuesG ~hollow!. Notice that the ML estimate alway
provides a physically sound result contrary to the linear
version~gray!.

Properties of transforming systems are of interest in a
physical theory. The developed formalism shows how
identify a generic quantum-mechanical process. Quan
systems consisting of spins, two entangled or three entan
~GHZ! qubits are tractable due to their low dimensionali
However, a proper and full quantum description of possi
transformations of such systems is more advanced, s
they are characterized by 12, 240, or even 4032 parame
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@12# V. Bužek, Phys. Rev. A58, 1723~1998!.
@13# R. Gutzeit, S. Wallentowitz, and W. Vogel, Phys. Rev. A61,

062105~2000!.
@14# A. Luis and L.L. Sa´nchez-Soto, Phys. Lett. A261, 12 ~1999!.
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