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Reconstruction of the spin state
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An ensemble of spir%—particles is observed repeatedly using Stern-Gerlach devices with varying orienta-
tions. Synthesis of such noncommuting observables is analyzed using the maximum likelihood estimation as an
example of quantum-state reconstruction. Repeated incompatible observations represents a new generalized
measurement. This idealized scheme will serve for analysis of future experiments in neutron and quantum
optics.

PACS numbdps): 03.65—-w

I. INTRODUCTION 0i0j= 6 Ti€joy,

Quantum mechanics of spfparticles often serves as an the scalar product of two projectors is given as
illustrative example of key quantum physical concepts in
standard textbooks of theoretical phydit$ The importance
of spin4 states is enhanced by the fact that they represent the
smallest possible amount of quantum information—quantum
bits (q bits). Aside from theoretically valuable “Gedanken” A mixed state, which is described by a density matrix, can be
experiments, spig-particles such as electrons, neutrons, orparametrized by
the circular polarization states of light quanta have allowed R
the realization of a variety of fundamental experiments in p=p.|a}al+p_|—ay}—4a (2
matter wave and quantum optics. They play a crucial role in
many sophisticated schemes involving entanglement, Bell
state analysis, or teleportation. Spin coherence and the pos- =5t 50@i(ps—p-), ©)
sibility to reconstitute the beam of spinparticles after the
Stern-Gerlach(SG) detection have been considered as thewherep, +p_=1 and the states-a) denote a general or-
“Humpty-Dumpty” problem [2]. Several approaches for thogonal basis. Alternatively the spin state is completely de-
measurement and estimation of spin states have been considrmined if the associated polarization vector
ered recently3—6]. In this Brief Report, the maximum like-
lihood (MaxLik) estimation of a spir-quantum state will be ri=(ci)=ai(p:—p-) (4)
formulated as an illustrating example of a more general treat-
ment[7,8]. The formalism presented here reveals the tightS known, where, as usual, the brackgtsdenote an expec-
relationship between quantum theory and statistics. The syriation value. The degree of polarization is defined by
thesis of many independent and nonequivalent idealized de- 5
tection schemes of the SG type will be interpreted as a kind Ir[*<1,
of generalized measurement of quantum states. It will be an . ) , ,
obviously useful tool for spin-state analysis in neutron depoy‘”tzh [r|*=0 for completely unpolarizedmixed state and
larization experiments, neutron as well as photon interferoml'|” =1 for fully polarized(pure states.

etry, and for quantum state reconstruction, to name just a few 1h€ Polarization or spin may be measured by projecting
typical examples. the state into the given directionsa of a SG apparatus.

Let us begin with a brief review of the basic properties of Closure relation and operator representation of such a device

spin4 quantum systems. A pure statprojecto) shall be ~ an be written as
represented by the expression

1
|<a|b>|2:§(1+aibi)-

|a)(al+| —a)(—a/=1, (5)
1
_ = .1
)@l =5 (130, @ A=Sllaya ~|-ax-al] (6)

where a=(a;,a,,a;) is the three-dimensional normalized Assuming for the sake of simplicity always the same total
state vectoro;, i=1,2,3 represent the Pauli matrices, andnumber of particlesN, the number of particles with either

the summation convention for repeated indices is used. Singpin “up” or “down” yields estimates of the projections of
the polarization vector according to the relations
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Since this may be done for three orthogonal directions in M _ L
spacex; (i=1,2,3) the polarization vector may be found by M E |adyal|+|-a)(—-a|=1, (9)
eliminating the total number of particlé$ J

ni.—n_ where "1 denotes the unit matrix. In general, however, the
ri=———. (8)  expected relations
nj++n;_
. o . . -1 - - 1
By this procedure each polarization component is determined Tr pm| +a)(xdl|} = m(ltxj) (10

separately. It represents a correct solution, provided that the

resulting polarization lies upon or inside the Poincsphere  cannot pe fulfilled because the system is overdetermined and
|r[*<1. However, the “states” outside the Poincasphere  ne gata are fluctuating. Hence, the probabilities cannot be

violate the positiv_e semidefiniteness of quantum states a”t‘ﬁapped in a straightforward manner just according to the
thus leads to an improper quantum physical description ofg|ative frequencies of outcomes.

noise[8]. Similar problems appear in the case when more e \axLik principle serves as a tool to overcome this
than three projections are used. Some results of SG projegioplem. It allows one to find the most probable state con-
tions might appear as incompatible among themselves due &?stent with the data. As the measure of probability the like-
the fluctuations and noises involved. Various SG measurgnqoq functional may be constructed, which corresponds to

ments are not equivalent, since they are observing differenf,q product of all probabilities for all detected data,
“faces” of the spin system. Such measurements, even when

done with an equal number of particles, determine different . L - _
projection with different errors. Detected data. collected L(p)=I1 (@|pla))NE+X)2((—al|p| —al))NE—X)"2,

from SG observations iM directions*a', i=1,2,... M . (11)
sample a variety of binomial distributions. Significantly, the

detected data; - fluctuate with the root-mean-square errors The extremal states of this likelihood functional satisfy the
given by VN[1—(ra})?]/2, depending on the deviations be- nonlinear operator equatids],

tween projections and the trdieut unknown direction of the

spin r. Therefore the various projections cannot be trusted 1 S | 1+x) |a)(@] 1-X) |—a)(—a] . .
with the same degree of credibility, since they are affected 2M 4 Y(dl|plal) P(—al|p|—al) p=p:
by different errors. The incompatibility of various SG mea- (12)

surements becomes manifest in quantum theory as the corre-

sponding operator&l) do not commute for different orienta- The quantum state shall be represented by its respective po-
tions a. Such data cannot be obtained in the course of théarization. Using the relatiol), multiplying both sides by
same measurement, but may be collected by repeated expesix and performing the trace, one obtains

ments. Thus an optimal procedure must predict an unknown .

state and simultaneously take into account data fluctuations. R(Nr+K(m+iK(rxr=r, (13
This indicates the inevitable nonlinearity of such a kind of : :

algorithm. MaxLik estimation does this job and fits the dataWhere the function&(r) andK(r) are defined as

to a quantum state. As will be demonstrated in the following 1 14X 1-X.
section, the synthesis of incompatible measurements may be R(r)==— 4 Ny
considered as a unigue concept of measuring quantum states. 2M T \1+a.r 1-d.r
1 1+X; 1-X; .
IIl. SPIN ESTIMATION K= — 3 SR aRNg
2M T \1+d.r 1-d-r

It is assumed that all spih-particles supplied by the
source are prepared in the same mixed state, and an id
lossless SG analysis is performed repeatedly on a systemegz
N such particles with varying orientation of the SG device.
Provided that the detection has been done WMithlifferent
orientations,N* M particles have been used altogether an
the unknown quantum state should be determined. The re- R(Hr+K(r)=r, (14)
sults of the measurement may be characterized by the set-
tings = a of the SG apparatus and by the relative frequenciesvhich can be solved conveniently by iteration. Starting from
of the outcomes 1/2(1X;)=n; . /N. Then the problem is the center =0 of the Poincaresphere, the left side of Eq.
to find the statés) that fit(s) the data in an optimal way. One (14) yields the first correction, which in turn may be used as
might be tempted to sample and invert the probability, preinput for a subsequent iteration step. This procedure provides
dicted by quantum theory, as it is done in the case of(8q. a rapidly converging algorithm for MaxLik fitting of an un-
Because each SG detection is represented by a complgt@own quantum state inside the Poincaphere.
measurement, the sum of the relatigh$ over all orienta- An equivalent result may be derived by parametrizing the
tions of the SG device reads likelihood function directly in terms of polarization. The rel-

nce real and imaginary parts are independent from each
her; the real part of Eq13) is sufficient to derive the
necessary conditions. Hence the final equation for the polar-
djzation vector reads
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evant part of the likelihood function corresponding to thetice here that upper and lower panels are complementary and
observation of particular data then can be written as the sum of the respective true probabilities is always exactly
1. The right panels visually present the results obtained by
_ IN(L+X)201 v 2 WN(L=X:)/2 repeating the experiment 10 times. Diamond symbols denote
/:(r)—H A the positions of five projectors on the Poincaghere. Or-
thogonal projectors in the opposite directions are not de-
The vectorr parametrizes an arbitrary unknown polarization picted. Stars indicate the position of the reconstructed states.
inside the Poincarephere and the products runs overMll  The true state corresponds to the north pole. Viewing the
directions. The standard statistical approach using MaxLilsphere from the top yields the lower right panel.
(alar)In L leads to a vector equation for the extreme value Quantum physical formulation inherently requires a non-
of the polarizatior{4] trivial interpretation which can hardly be recognized from
the equation for the polarization vectdr6). Since the above
J scheme determines a quantum state, a generalized measure-
J. ma Y (16) ment concept desqubed by a probablll_ty operator measure
(POM) [9] must exist, the result of which is the quantum

Equation(14) is equivalent to Eq(16). Indeed, Eq(16) is state. Indeed, such a prgbability operatpr_ measure can'be
nothing else thark (r)=0, implying the relationR(r)=1. found by proper renormalization of the erglnal SG analyss
Vice versa, Eq(14) could be rewritten in the form of Eq. [8]. Let us define the POM as renormalized SG projectors
(16) as well.

In Fig. 1 the results of numerical simulations are shown.
Stern-Gerlach detection is simulated here for projection of an
“unknown” state (north pole on the Poincaspherg in five
different directions. Each “measurement” is done with 20 fo; each index. The closure relation then reads
impinging particles registered either with spin @ypper left
pane) or with spin down(lower left pane). Both left panels M
show typical values for a single experiment. For each pro- > |a)al|g+|—al)(—a|g= ip, (18
jector three bars are plotted: the first béipgack) show the i
true value of the probability whereas the second ligray) ) ] -
exhibit the statistical fluctuations of the “counted” events @nd the renormalized POM fulfills the conditions
around the respective true value. Finally the hollow bars rep-
resent the results of the reconstruction—the statistics of the
reconstructed state corresponding to the given projector. No-

Xj—al-r

1%X

+al\(+ 3l
2M(iaj|,3e|tai)|_a><_a|’ 10

+al)(+al|z=
R

- . . 1
Tpe za)(zalgh= 57 (1X). (19

014101-3



BRIEF REPORTS PHYSICAL REVIEW A 62 014101

Here p, denotes the extremal state—a solution of Bkp).  other hand, we aimed to optimize not the measurement itself
Relation (18) indeed coincides with the equation for ex- but its mathematical treatment. This seems to be reasonable

tremal state$12), whereas the condition for expectation val- from the experimentalist's point of view because it is ques-
ues(19) is fulfilled as an identity. The reconstruction is done tionable how to do a general measurement described by a
in that subspace where the renormalized POM reproduces tfOM. In the Ref[13] the information content of the large
identity operator. Specifically this means that the identityensemble of identically prepared quantum systems is inves-
operator on the right-hand side of E48) is spanned by the tigated. It is proved that for the spfensembles the Crame
one-dimensional Subspace orﬂw_, by a Sing|e ray pro- Rao bound can always t.)e attained and. Optlmal measure-
vided that the extremal stafg, is a pure state. For a general ments may be well approximated by adaptive separable ones.

extremal density matrix the reconstruction is accomplishe his corresponds V\_’e”_ to the res_ults presented in th's. Brief
in the whole two-dimensional Hilbert space. The distinction eport. Our analys!s Is not restru_:ted to the asymptotic do-
between relationg9),(10) and (18),(19) characterizes the M&N and emphaS|zes_ the re_Ia'qonshlp between quantum
subtleties of quantum state reconstruction. The MaxLik So;heory and mathematical stafistics. As we have demon-

lution may be also interpreted in the language of probabili-Strated’ for a given measurement the MaxLik approach pro-

ties. The detected data . sample different binomial prob- vides aln ogtlmal ;[reatment in the sj[ense that it reproduces a
ability distributions fori=1,... M. MaxLik estimation generalized quantum measurement.
finds a common multinomial distribution and thus allows
sampling of the data with seemingly the highest likelihood. Iil. SUMMARY

The method developed here may be compared with the The synthesis of incompatible observations has been
existing approaches. Jaynes’'s maximum entropy principl@yajuated using the concept of MaxLik estimation. It defines
(M_axlEnl) [10] has been applied as well to the estimation ofy generalized measurement of a quantum state. The MaxLik
spin-; states in Refs[3,6]. In general, however, these tWo rqcedure provides a quick recipe for an experimentalist. No
methods are not equivalent. The MaxLik method seeks foh, pyriori knowledge about the spin state is needed. The itera-
th.e most likely solution consistent with the data, where_aqive algorithm based on the solution of H44) is capable of
with the MaxEnt method one searches for the worst solutionyging the polarization of the most probable state, provided
still consistent with the data. This difference may be attrib-th4t many detections with various settings of SG apparatus
uted to the different prior information in the maximum prob- haye heen done. In the near future the formalism developed
ability principle [11]. But this is not the only difference. pere will be applied to the investigation of various problems,
External conditions of both approaches differ substantiallyg,ch as the spin-state estimation in neutron depolarization
MaxLik has been applied to measurements with many progyperiments, the estimation of quantum states inside split

jectors. However, the same conditions cannot be applied fQ5eam neutron interferometers, or the analysis of entangled
the MaxEnt approach because there only three free paramiaies.

eters are necessary for the determination of an unknown spin

state. Therefore, the conditions defined by @€) cannot be

fulfilled in general. Obviously the MaxEnt concept is not ACKNOWLEDGMENTS
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