music theorists. Their work was often inconsistent, how-
ever, and they came to conflicting conclusions. This project
has given an objective and consistent evaluation over a
wide range of parameters, and a meaningful measure of just
how good a fit various equal temperaments can provide to
the important just intervals. The familiar case N = 12 is
found to be less remarkable than is commonly believed,
and the other best fits found might be characterized as only
moderately remarkable, having occurred in spite of odds
on the order of ten-to-one against.

A final question raised by Hartmann is whether there is
any way to “‘derive” N = 12. While I do not think it should
be given the status of a proof, there is an algorithm studied
by Brun'® that generates a series beginning with N = 12,
53, 359,. . . when applied to y,, . I have concluded that this
procedure is at best “suggestive” of important values of N
when it is generalized to include other intervals; further
comments may be found in Ref. 17.

In the past one might have dismissed this whole investi-
gation as being of purely academic interest, because of the
impracticability of performing music on traditional instru-
ments built to embody very large values of N. However; we
live in an era when computer-generated sound and com-
puter-assisted instruments might well use large-N equal

temperaments. This work could be of some use in giving a-

clear idea just how much can be accomplished with various
choices of N.
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Aberration, as well as the Doppler shift, are phenomena close to everyday experience. Special
aspects of relativity are derived from axioms concerning the conformal celestial spheres of
coinciding observers and are presented with elementary geometrical tools. One way of linking the
mathematical hypotheses to physical quantities related to space-time is demonstrated. The
classical formulas for aberration and Doppler shift are used as starting points for deriving the

relativistic counterparts.

L INTRODUCTION

The special theory of relativity can be derived from sev-

eral seemingly equivalent systems of hypotheses. Some of
them use the constancy of the velocity of light as an axiom,
others derive it as a consequence of other axioms.!™> It is
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even possible to use a Lorentz invariant vacuum medium,
say ether, to arrive at the special theory of relativity, al-
though “the ether just fades away”’® by exploiting the axi-
oms.”® Ether is not contradictory to relativity, but it is not
necessary.

Confusion was caused for a long time by the different
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interpretations commonly used for the words “observer”
and “observe.”®!? The first operational concept of the ‘““ob-
server” was introduced by Einstein in his 1905 paper on
“Die Elektrodynamik bewegter Korper.” This type of ob-
server collects data on events in space and time with a
whole set of recording clocks evenly distributed in space.
The clocks for this Einstein type observer are associated
with an inertial frame of reference. This concept is useful
for physicists in their technical work, but is a difficult intro-
duction to the theory. A second concept of the relativistic
“observer” is close to the everyday use of the word. This
observer is located at one place in space and collects all
information by the light arriving at his position.

This second type of observer is confronted with phenom-
ena like aberration and Doppler shift whereas the Einstein-
ian observer registers time dilation and Lorentz contrac-
tion.

When we use the word observer in the rest of this article,
we always mean an individual observer who collects all
information from the retarded light cone. He registers the
light arriving at his location from all directions of his celes-
tial sphere.

Many textbooks discuss at length the complicated and
somehow impossible thought experiments with astronaut
twins and trains to explain the Lorentz contraction and
time dilation. Being one-way experiments, they are contra-
dictory to relativity and sometimes ignore the question,
“whalt1 is the same physical quantity for different observ-
ers?”’

It might be more reasonable to explain some aspects of
special relativity by using observations that can be under-
stood by feasible, direct experience in everyday life:
Doppler shift and aberration. Both effects are caused by the
finite velocity of any information transfer and can be dem-
onstrated with either sound waves or light. Doppler shift is
easily witnessed near any street or railway line with fast
moving vehicles and aberration with fast moving airplanes,
where the sound seems to come from a direction some-
where behind the visible plane.

Aberration and Doppler shift allow one to describe a
good portion of the special theory of relativity. It will be
shown how it is even possible to reconstruct this part of the
theory by introducing a system of hypotheses solely based
on observation and comparisons of the celestial spheres of
coinciding observers of the second type.

However, this observer cannot be pointlike, as he is
treated in the following parts of this article, and has to be
considered as an idealization. Every gain of information
needs a finite amount of time to elapse and occurs in a more
or less extended spatial dimension. This concept of local-
ized observer must be dropped as soon as one deals with
other physical quantities than aberration, dynamics needs
a space-time concept.

II. ABERRATION

Most of the classical formulas look simpler than their
relativistic counterparts. However, exploitation of the for-
mulas often reveals simpler laws and higher symmetries in
the relativistic case. Aberration of light is an apparent shift
of the direction of incident beams due to the motion of the
observer relative to the light source, and offers a nice exam-
ple for demonstrating this aspect. Einstein already present-
ed the equation for the relativistic aberration of light in his
1905 paper. The equation in a different and little used
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celestial sphere plane of

projection

Fig. 1. Stereographic projection of the celestial spheres illustrating the
angles ¢ and &' between the direction of the relative motion and the inci-
dent light beam as seen by coinciding observers.

form'? is
tan(4/2) = [(L +8)/(1 = B) ' tan(d'72), (1)

where o and ¢/, respectively, represent the angles between
the direction of the relative motion and the incident light as
observed by the two observers and B = v/c is the relative
normalized velocity of these observers. This form has the
advantage of a simple interpretation of the aberration.
Equation (1) describes a bijective mapping between the
celestial spheres of the two coinciding observers (Fig. 1):

(3.8)—(3'.¢' =¢), (2)

where the ¢ and ¢ define spherical coordinates. The map-
pings between celestial spheres are conformal on the whole
spheres; this means the corresponding angles are equiva-
lent and circles map to circles. This fact was used to show
that spheres present circular outlines to every observer, in-
dependent of their relative movement.'?

The above-stated qualities of the mapping can be proven
with elementary geometrical tools. Due to the cylindrical
symmetry defined by the axis of the relative movement of
the two observers, the mapping of the spheres has two dia-
metrical fixed points called apex and antapex of the mo-
tions. To discuss the mapping more easily, the celestial
spheres are projected stereographically onto a plane (Fig.
1). Antapex is used as the projection center. This projec-
tion of the spheres onto a plane is unique, reversible, and
conformal. Therefore, once again circles map to circles. On
the plane, Eq. (1) relates tan(< /2) and tan(4'/2) to the
respective distances 7 and 7 from the image of the apex
(Fig. 1):

r=tan(«/2) and ¥ = tan(43 '/2). 3)
Thus with Eq. (1) the above gives
r=ABr, 4)

which describes a dilation since 4(f3) is a positive number.
Because a dilation is conformal, we have proven that the
aberration formula (1) defines a conformal mapping on
the celestial spheres.

The set of dilations of a plain with a common center
forms an algebraic group under composition. Correspond-
ingly, the set of conformal mappings of the celestial spheres

H. Blatter and T. Greber 334



that obey Eq. (1) also form a group under composition.
These mappings are related to different pairs of coinciding
observers which all have collinear relative motions.

The group quality of the mappings described by the aber-
ration formula (1) now leads to the addition law for collin-
ear velocities:

tan(d°'/2) = A(B,)tan(4 "/2)

tan(d /2) = A(B,)tan(3'/2) (5)
can be converted into

tan(#/2) = A(B;)tan(3 " /2) - (6)
with

ﬂ3 = (ﬂl +B2)/(1 +ﬂlﬁ2)! (7)

which is the well-known relation.

Now, the classical aberration equation shall be discussed
for comparison with the relativistic version. The aberration
of light was discovered by Bradley in 1729. This discovery
brought the general accordance that light is traveling at a
finite speed. The classical formula reads

tan ¢ =sind'/(cos 3’ — B), (8)

which is simpler than the relativistic counterpart [ compare
with Eqgs. (13) and (14)]. This equation also describes a
mapping of the celestical spheres of coinciding observers.
Except for the cylindrical symmetry this mapping cannot
be described by simple symmetries and conservation laws.
It is not conformal and it does not take circles into circles,
which is easily demonstrated by choosing an example.

The velocity of light plays no special role in the classical
theory. Therefore, Eq. (8) is most easily interpreted as a
mapping of celestial spheres, if observer B’ who sees angles
4’ is at rest relative to the light source considered. Then,
B = v/cis composed of the relative velocity v of the observ-
ers and the velocity of light in the rest frame of the light
source. For any other couple of coinciding observers the
apparent velocity of light becomes dependent on the veloc-
ity of B’ relative to the light source. As a consequence, the
parameter = v/c’ now contains a velocity of light ¢,
which is also dependent on ¢'. This makes an interpreta-
tion of Eq. (8) as a set of mappings of the celestial spheres
rather awkward.

III. RECONSTRUCTING THE THEORY

The mentioned qualities of the relativistic aberration for-
mula (1) now suggest a new possible way of reconstructing
the special theory of relativity. This is done by using hy-
potheses exclusively to describe and compare the celestial
spheres of coinciding observers. This was proposed by A.
Komar "’ in 1965 in his article “Foundations of Special Rel-
ativity and the Shape of the Big Dipper” in this Journal.
Komar motivated his idea with the mathematical theorem:
“The algebraic group of conformal mappings of a 2-dimen-
sional sphere ontoitself is homomorphic to the group of the
homogeneous orthochronous Lorentz group.”

The suggested hypotheses are': (a) given two observers
who instantaneously coincide, the celestial spheres which
each observes at that instant provides a legitimate repre-
sentation of the same physical situation and (b) the celes-
tial spheres of the two observers are conformal.

As Komar points out, “the first statement of the princi-
ple of relativity stems from the recognition that coinciding
observers collect information from the same retarded light
cone, regardless of their relative state of motion. It there-
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fore incorporates some of the content of the hypothesis of
the constancy of the velocity of light.”

In this article, it shall be shown how some of the state-
ments of special relativity can be derived from the above-
stated hypotheses by using elementary arguments. Much
care has to be taken not to use hidden assumptions and to
clearly state all assumptions used. This is especially impor-
tant since the result of the attempt is already known. It is
very easy to get trapped with right results but wrong logic.

Primarily, nothing is specified about how the coinci-
dence is characterized and what distinguishes each observ-
ers’ motions. Most generally, the relative motion can be
described by scalar, vectorial, or tensorial quantities. First
a restriction concerning the specification of the coinci-

. dence and thus of the class of equivalent observers must be

made: The coincidence of the two observers distinguishes
only one direction on the celestial spheres. All vectorial
quantities that define the relative motion are collinear.

To make sure that no other directions are distinguished
otherwise, one more hypothesis is necessary. Since the first
two axioms only make statements about the comparison of
the celestial spheres of coincident observers, one more as-
sumption about the celestial sphere of one single observer is
needed: (c) the celestial sphere of one single observer is
isotropic.

The restriction of the character of the coincidence and
the third hypothesis define a cylindrical symmetry for the
aberration. Now, the required conformal mapping must
have two diametrical fixed points which we again may call
apex and antapex. As discussed in Sec. II, the celestial
spheres may be projected stereographically onto a plane
(Fig. 1), again using antapex as the projection center. The
conformal mapping of the celestial spheres is thus project-
ed into a conformal mapping of the corresponding planes.
The image of apex remains a proper fixed point whereas the
antapex itself is projected to infinity. Thus the antapex be-
comes an improper fixed point. The projection plane now
can be treated as the complex plane.

A linear fractional transformation, often called a Mo-
bius transformation:

w=f(z) =(az+ b)/(cz+d), ad— bc#0, 9)

with the complex constants &, b, ¢, and d and the complex

" variables z and w is conformal on the complex plane except

for z= —d /¢, for which point the denominator of (9)
becomes zero. The origin z = 0 of the complex plane can
arbitrarily be chosen to be the proper fixed point of the
mapping; it shall be the projection of the apex. This is
equivalent to f{0) = 0 and yields b = 0. If we consider the
infinitely remote point is an improper fixed point, no other
point of the complex plane shall be be mapped to infinity
and therefore ¢ = 0. With these results we arrive at a map-

ping

w=f(z) =(a/d)z=Az, AF#0, (10)

which is now conformal and reversible on the whole com-
plex plane, as required by hypothesis (a). The same result
could be obtained by using the Liouville theorem from
complex analysis which implies that the only mapping con-
formal on the whole complex plane is a linear transforma-
tion. The cylindrical symmetry of the conformal mapping
on the spheres demands that A4 is a positive real number and
the mapping (10) becomes a dilation with the center z = 0.
Corresponding to Eq. (3), the mapping on the celestial
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spheres now obeys an equation
tan(d/2) = A tan(d'/2) , (11)

which is essentially the statement of Eq. (1). The dimen-
sionless scalar quantity 4 characterizes the one-dimension-
al relative motion.

1V. VELOCITY

At this point, the hypotheses are essentially exhausted.
To arrive at the aberration in Eq. (1), one needs some link
between the mathematical ideas of the hypotheses and
operationally defined physical quantities.

It is reasonable to begin with the most basic parameters
used in classical physics to describe motion: velocity and
acceleration. The question arising at this stage is how pa-
rameter 4 is connected with velocity, acceleration, and
possibly higher derivatives. The above-stated hypotheses
(a)-(c) do not give any information on this.

Instead of introducing a new hypothesis on this connec-
tion, a new method is proposed here. Since classical physics
is a very good description for many phenomena in our
world, it should stay valid within a certain limit (8- 0) of
the new theory.

In Eq. (4) only one parameter A defines the conformity
of the celestial spheres. This one parameter can be substi-
tuted by another parameter -

A=A . (12)

To be safe from using any hidden assumptions about
other quantities also characterizing the coincidence of the
observers, one more restriction about the class of relative
motion to be considered is introduced: The relative motion
of coinciding observers is defined by one single vectorial
quantity.

For choosing a relation 4 (#) that can be related to clas-
sical velocity, the following idea shall be exploited: As de-
scribed in Sec. 11, the classical aberration formula (8) does
not describe a conformal mapping on the celestial spheres
and thus contradicts hypothesis (b). As a valid limit of the
conformal aberration, it is assumed that the classical aber-
ration can be corrected by an appropriate factor B(f3):

tan 4 = Bsind'/(cos?' —B) . (13)

A straightforward calculation transforming Eq. (13) into
the form of Eq. (11) yields

B=(1-8)"2=1/y (14)
and thus
AP =1 +p/(1-p)]1"2, (15)

which fulfills the above-stated requirement of the classical
limit #— 0. With this result, we again arrive at the aberra-
tion formula (1).

V. DOPPLER SHIFT

Thus far, no time and distance measurement and conse-
quently, no space-time concept has been introduced, since
a coincidence of observers occurs in one point of space-
time. At this point, no definition of time measurements
shall be discussed. But it is interesting to note in this con-
text that, similar to aberration, a heuristic derivation of the
Doppler shift formula is possible. Using the Galilean prin-
ciple of relativity for deriving the classical formula for the
Doppler shift of light yields

o' =aw(l —Bcosd)
o=0'(l+B'cosd’),

(16a)
(16b)
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but also requires ¢ = ¢’ and ¢’ = ¢(1 — B cos #)."* This
contradicts the above-stated aberration and the constancy
of the velocity of light.

To regain the conformal aberration (1), Eqgs. (16a) and
(16b) can also be corrected by a factor D:

o' =wD(1l — Bcos ?) (17a)
o=w0D(l+pBcosd’). (17b)

By substituting (17a) in (17b) and applying the aberration
formula in the yet different form

cosd=(f +cos?')/(1+Bcosd’), (18)
one can calculate D as

D=y=(1-8%""2 (19)
The relativistic Doppler shift formula thus is

@' = wy(l —BcosP) (20)
or using (18) it becomes

o' =wy[l —B(B+cosd')/(1+Bcosd)]. (21)

Equations (20) and (21) allow us to discuss Doppler shift
and its relation to aberration and time measurement.

For a movement in the direction towards the light
source, which means ¢ = ¢’ =0, Eq. (21) becomes

o =oy(l ~p). (22)

The second term in the bracket of Eq. (22) means the pure
radial velocity. Equation (20) can be interpreted geometri-
cally as illustrated in Fig. 2. Observer B shall be resting
relative to the light source L and observer B’ moves with
the velocity Bin the indicated direction. Due to aberration,
the angle ¢’ between the apparent direction towards the
light source and the direction of the relative movement as
observed by B’ is different to the corresponding angle  as
observed by B. Thus observer B’ registers a Doppler shift
which corresponds to his radial velocity relative to the light
source, but to his radial velocity as measured in the frame
associated with observer B.

The factor ¥ in Eq. (20) can be interpreted as a conse-
quence of the different time scales in the two frames B and
B'. For ¢ = 90°, i.e., for a pure transverse motion of B’ as
observed in the rest frame B of the light source L, the
Doppler shift as observed by B’ is a pure consequence of
time dilation:

(23)

o' = y.

Fig. 2. Coinciding observers viewing the same light source L with respect
to L' in the directions ¢ with respect to i#'. The observer B rests with
respect to the light source.
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(a)

NS

(b)

(©

(d)

Fig. 3. The city street as viewed by Mr. Tompkins riding on his bicycle along the 1ane: (a) nonrelativistic view, (b) relativistic view with a speed 8= 0.8 in
Relativity Land, looking forward and (c) looking backward at the same speed, (d) street map with the house numbers, Mr. Tompkins’ position, and his

direction of motion.

This suggests a possibility to observe a proper time dilation
and is deduced as a consequence of the aberration.

For an apparent pure transverse motion of B’ relative to
the source, at ' = 90°, the light still appears Doppler shift-
ed:

o' =w/y. (24)

This transverse Doppler shift can be interpreted as a conse-
quence of time dilation and aberration. If the apparent
movement is purely transverse for B’, this motion is not

_purely transverse for B and the term S cos ¢ in Eq. (20) is
the radial component of the velocity 8. Therefore, accord-
ing to Eq. (20), B’ observes a relativistic Doppler shift due
to an apparent radial velocity in frame B but in a direction
¥’ = 90° due to aberration in frame B’.

VI. DISCUSSION

In the derivations described there was no need to intro-
duce an operational concept of space and time. The coinci-
dence used in the original hypotheses was considered to
occur at only one point of space-time. With an operational
time measurement by counting cycles of a stable oscillator,
the constancy of the velocity of light also allows an oper-
ational concept of distance measurements. To be safe with
the time concept, identical oscillators are allowed to move
with each observer who then measures its proper time.

One is thus able to measure distances from the observer
to some point in space by radar sounding, although for
practical reasons only within interplanetary distances. The
advantage of this radar method is the exclusive use of two-
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way experiments that are the operational experiments in
relativity theory.

In this way, each uniformly moving observer defines his
own local space-time. What is interesting, is how these
frames of different observers are transformed into each
other. Here, a derivation of the Lorentz transformation
that manages this is needed.

With the derived formulas (1) and (20), we arrive at a
possible link between aberration and Doppler shift on one
side and the Lorentz transformation on the other side. As
mentioned in textbooks,™ the formulas for relativistic
aberration (1) and the Doppler shift (20) are equivalent to
a Lorentz transformation of a four-vector (kq,k)) with the
components Kk, =w/c and the wave vector k for light
waves,

To use this approach as a first introduction to special
relativity theory is not recommended. The usual way of
deriving the Lorentz transformation and thus the formula
for aberration is still a good approach to relativity. How-
ever, it is not necessary to exploit all consequences of diffi-
cult phenomena like the Lorentz contraction, time dila-
tion, and the related so-called paradoxes at an early stage of
teaching relativity. Aberration and also the Doppler shift
offer a means of explaining a relativistic world far closer to
imagination as well as reality. The twin paradox just ceases
to be a difficult story when radio signals going forth and
back transmit the information of the clock-time with the
inevitable time lag.'®

In G. Gamows’ story “Mr. Tompkins in Wonder-
land,”'¢ pictures have to be changed. The relativistic city
street looks very strange to us due to aberration (Fig. 3) as
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was realized and described by several authors™'’~! after

1959. Specifically Roger Penrose ' showed how a relativis-
tically moving sphere displays a circular outline to any ob-
server. Due to the Doppler shift, a color picture would look
even more exotic, especially if we also take the relativistic
change of light intensity depending on the relative motion
of the light source into account.
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The double well potential ¥(x) =1 A(x* — a?)? is addressed using both semiclassical path
integral and instanton techniques. The basic physics of the two-state system is shown to arise, and
energy levels calculated via the two methods are compared.

L. INTRODUCTION

The double well potential, as typified by the potential
(cf. Fig. 1)

V(x) =1A(x*—a*)?, (1

offers a soluble example of a two-state system. As such, the
physics is of great importance and is generalizable to situa-
tions far beyond the s1mp1e potential well indicated
above—e g., the ammonia molecule, the K °-K ° system,
etc.’

The physics of the double well is usually explored via the

semiclassical WKB approximation solution to Eq. (1).

This procedure is well known and we shall merely summa-
rize the results:*

(1) The energy levels, as defined via the Schrodinger
equation (note we are using fi = 1),

( 21 52+V(x))'/}"(x) E, ¢, (x), (2)

consist of a series of nearby pairs with
= (n+ Do + (w/2m)exp( — iW>),
n=0,12,... (3)
Here,
0y = (1/m)V" (@) = (2/m)ia’ (4)
is the classical oscillation frequency of either of the two
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wells and
%W2= deTmVx) —E] (5)

is the usual WKB penetration integral.
(2) The wavefunctions corresponding to these states are
given approximately by

¥ =V1[¢.(0) F . (—x)], (6)
where ¢, (x) is related to the single oscillator wavefunction
Y. (x) via

( ! d—2+—mwo )x,.(x) =(n+i)a)ox,,(x),
2m dx? 2
(7a)
with
. (x) =), (x—a). (7b)

(3) A particle, which at time ¢ = O is on one side of the
barrier, oscillates back and forth between the two wells
with period

7= (7/we)exp(3W,) . (8)

While these results are straightforwardly derivable using
WKB techniques,’ it is interesting to note that they may
also be obtained through two very different methods—the
semiclassical path integral and the instanton procedure. It
is our purpose here to outline these alternate techniques
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