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Abstract
We discuss the relativistic transformation of the energy of a charged spherical
capacitor. The energy stored in the electromagnetic fields observed by an
uniformly moving frame is related to that of the rest frame by a factor different
from γ . Considering the energy and the stresses in the capacitor shells, we
show that the total energy of the system satisfies the expected relativistic
transformation.

1. Introduction

A very interesting example of an apparent paradox in the relativistic transformation of the
energy was given by Rindler and Denur [1] some time ago. They considered a parallel-plate
capacitor as seen from a frame moving in the direction of the electric field. The electrostatic
energy of the field configuration is reduced by a factor of 1/γ with respect to the energy
at the rest frame. This seems to contrast with the expected relativistic result of the energy
increasing by γ . However, taking into account the stress in the braces that keep the plates at
fixed positions, they found the appropriate relativistic transformation for the total energy of
the system. This is a very nice example of the role played by the tension in the relativistic
dynamics of extended bodies.

In the case of the parallel-plate capacitor, only electric fields show up in both frames
and the geometry is unchanged by coordinate transformation. When we consider a spherical
capacitor, the change of observer has non-trivial effects in the geometry and in the field
configuration. The spherical symmetry of the rest frame is not present for a moving observer.
Furthermore, the field configuration for any moving frame will involve magnetic fields in
addition to electric fields. Another important difference is that the relevant stress tensor
contributions are distributed along the spherical capacitor shells while in the parallel-plate
case they were acting just on the braces. We will see that the electromagnetic energy will
transform with a factor different from γ but also different from the parallel-plate case. An
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Figure 1. Capacitor in the rest frame S0.

Figure 2. Capacitor moving upwards in the frame S with electric and magnetic fields. The
magnetic field lines are circles around the direction of motion.

interesting aspect that will emerge is that the tensions inside the capacitor shells are not
uniquely determined. Only their boundary values are fixed by the electric forces on the charge
distribution. However, the transformation of the total energy of the system depends only on
these boundary values.

2. Electromagnetic energy

Let us consider a spherical vacuum capacitor of internal radius L1 and external radius L2, with
charge q on the inside shell and −q on the outside, as shown in figures 1 and 2. S0 is the rest
frame of the capacitor and S is a frame moving with constant velocity −vẑ0 with respect to
S0. The coordinate systems on the frames are parallel and the origins coincide with the centre
of the capacitor at t0 = t = 0. While for S0 the capacitor shells are spheres with the centre
at coordinate origin, for S, by Lorentz contraction, they are ellipsoids centred at vtẑ and with
semi-axis L1(1, 1, γ −1) and L2(1, 1, γ −1) in the (x, y, z) directions, respectively.
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For the S0 observer, the fields and the electromagnetic energy between the shells are just

�E0 = 1

4πε0

qr̂

r2
, �B0 = 0, U0EM

= q2

8πε0

(
1

L1
− 1

L2

)
, (1)

while for S the fields, obtained from the relativistic transformations, are

�E =
(

qγ

4πε0

)
xx̂ + yŷ + (z − vt)ẑ

(x2 + y2 + γ 2(z − vt)2)3/2
,

(2)
�B =

(
− qγ v

4πc2ε0

)
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(x2 + y2 + γ 2(z − vt)2)3/2
.

The electromagnetic energy involves integrating over the region between shells. This
can be done by introducing an ellipsoidal coordinate system: x = r sin θ cos φ, y = r

sin θ sin φ, z = γ −1r cos θ + vt . The energy density in these coordinates is

u
EM

= u
EM
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and the total energy is
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(4)

So, U
EM

is not equal to γU0EM
. Although the whole capacitor is an isolated system, the

electromagnetic fields are interacting with the capacitor shells. Let us see what happens with
the transformation of the energy of the shells.

3. Energy of the shells

For an extended distribution of matter, the energy density and the stresses transform as
components of a quadri-tensor of rank two [2]. In particular, for a boost in the z direction the
matter density ρ in the S frame is related to the rest density ρ0 by

c2ρ = γ 2

(
c2ρ0 +

v2

c2
T zz

0

)
, (5)

where T zz
0 is the component of the stress in the z direction, through a surface normal to z in

the rest frame S0. The structure of stresses in this frame can be described considering that the
conducting shells are subject to electric forces that generate external tensions on the outside
surface of the internal shell and on the inside surface of the external shell. The spatial sector
of the stress tensor in standard spherical coordinates has the general form

T ij =
⎛
⎝T rr T rθ T rφ

T θr T θθ T θφ

T φr T φθ T φφ

⎞
⎠ ,

where T ij = T ji . In the rest frame S0, spherical symmetry implies that T rθ = T rφ = T θr =
T θφ = T φr = T φθ = 0 and T θθ = T φφ and that all tensor components depend only on r. So,

T ij ≡
⎛
⎝T R(r) 0 0

0 T L(r) 0
0 0 T L(r)

⎞
⎠ .
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Figure 3. Forces acting on a volume element inside a shell.

The stresses are subject to the condition of equilibrium of forces in any small volume
element inside a shell as shown in figure 3. The radial components of the forces acting on
such a volume element are

F2 =
∫ α

0
(T R(r) cos θ)(2πr sin θ)(r dθ) = T R(r)πr2 sin2 α, (6)

F1 = −TR(r + δr)π(r + δr)2 sin2 α, (7)

FL =
∫ r+δr

r

(T L(r ′) sin α)(2π)(r ′ sin α) dr ′ = 2π sin2 α

∫ r+δr

r

T L(r ′)r ′ dr ′. (8)

The equilibrium condition F1 + F2 + FL = 0 leads to

d

dr
(T R(r)r2) = 2rT L(r). (9)

This equation is not sufficient for finding out the stresses inside the shells. However, as
we will see, it tells us that the total energy in the moving frame depends only on the
boundary values of the stresses. The Cartesian component, relevant for the total energy in
equation (5), is

T zz(r, θ) = T R(r) cos2(θ) + T L(r) sin2(θ).

For each spherical shell the spatial integral of this stress, using equation (9) and integrating by
parts, is

UT =
∫ LB

LA

∫ π

0

∫ 2π

0
γ 2 v2

c2
(T zz(r, θ))γ −1r2 sin θ dθ dφ dr

= γ
v2

c2

4π

3
((LB)3T R(LB) − (LA)3T R(LA)), (10)

where LA and LB are the internal and external radii of the shell.
In order to calculate the tensions on the surfaces of the shells, we first have to determine

the electric field acting on these surfaces. We can start considering just a single spherical
surface of radius L with centre at r = 0 and uniform charge density σ = q/4πL2. The electric
field for points inside (r < L) or outside (r > L) this spherical surface can be calculated
using directly the Gauss law. One finds the well-known result

�E(r) = 0 (r < L),

�E(r) = q

4πε0r2
r̂ (r > L).

(11)



Relativistic energy of a moving spherical capacitor 89

For points that lie on the surface, r = L, we can calculate the electric field by considering
an infinitesimal element of area dA and integrating the electric field contributions d �E produced
by all the other area elements of the surface. The result of this integration, in the limit where
the area dA goes to zero, is a total electric field reduced by a factor of 1/2 with respect to the
field just outside the surface:

�E =
(

1

2

)
q

4πε0L2
r̂ (r = L). (12)

Now, returning to our system of two shells, the external tensions act only on the surfaces where
the charges are located, i.e., the external surface of the internal shell and the internal surface
of the external shell. So we will consider only these surfaces. For the inside shell there is no
contribution from the external shell, so the field on the charged surface is just

�E(L1) =
(

1

2

)
q

4πε0L
2
1

r̂ , (13)

while for the external shell we have the superposition of the field produced by the internal
shell (positive radial direction and no factor of 1/2) and the field produced by the external
shell (negative radial direction and factor 1/2) resulting in

�E(L2) =
(

1

2

)
q

4πε0L
2
2

r̂ . (14)

The radial tensions on the surfaces of the shells correspond to the inward radial components
of the forces per unit area. So, for each surface, we multiply the electric field by the
surface charge density and by the unitary normal pointing inside the shell. We find that the
nonvanishing tensions are equal to

T R(L1) = − q2

32π2L4
1ε0

, T R(L2) = − q2

32π2L4
2ε0

. (15)

So, integrating the energy density (5) in the volume of the two shells, we find contributions
to equation (10) from the internal shell with LB = L1 and from the external shell with LA = L2.
The energy of the shells in the S frame is thus

Mc2 = γM0c
2 − 1

3

v2

c2

q2γ

8πε0

(
1

L1
− 1

L2

)
. (16)

4. Total energy

The total energy of the capacitor (shells and fields) using equations (4) and (16) is

U = U
EM

+ Mc2 = γ (M0c
2 + U0EM

) = γU0.

So, the total energy transforms in the expected way. Also, it does not depend on the
stresses inside the capacitor shells but only on their boundary values. This fact is due to the
asymmetric time delay in the electromagnetic forces acting on the different parts of the shells
in the S frame when the capacitor is charged, which leads to a net work in this frame.
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