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In the special relativistic twin paradox presented here, each twin lives on one ring of a
counterrotating pair of infinitesimally separated rings, so that the twins travel on the same circular
path but in opposite directions. The observers on the ring of one twin should see the clock of the
other twin slowed by time dilation, but at each meeting of the twins symmetry demands that they
agree on the amount of time that has passed since their previous meeting. The resolution of the
paradox focuses attention on the relation of time dilation to clock synchronization. ©2000 American

Association of Physics Teachers.
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I. INTRODUCTION

Twin paradoxes have played an important role in the pe
gogical history of special relativity theory; generations
physics students have been challenged by their professo
apply their newly minted understanding of relativistic pri
ciples to the resolution of these famously counterintuit
problems. Continuing in this venerable tradition, we pres
a twin paradox here, but one that differs significantly fro
the familiar rocket parable. Although this paradox appear
Lightman et al.,1 the solution provided there is brief, math
ematical, and formal, and is not accessible to the full ra
of students for whom the paradox would be of interest. So
elements of the resolution of the paradox are related to is
that have been discussed by several authors2–4 but the con-
nection to our paradox is not straightforward. Here
present an analysis that should be both mathematically
physically intelligible to beginning relativity students. In o
der to optimize the accessibility of the basic ideas, we
egate all calculations to the Appendix.

In our parable, Lisa, the protagonist of the paradox, liv
on a ring of radiusR with a team of observers stationed
every point on her ring. Bart lives on an identical ring. T
rings are negligibly separated, rotating at equal and oppo
angular velocityv about a common axis. This common ax
is at rest in a ‘‘Lab’’ frame, through which Bart, Lisa, and a
of Lisa’s observers move at speedv5vR. Bart moves
through the Lab at this speed in the counterclockwise dir
tion while the observers on Lisa’s ring move through the L
at this speed in the clockwise direction. The twins will pa
each other periodically, their negligible separation allowi
each to read the other’s clock.

At a certain moment, Bart and Lisa happen to be at
same place, and they notice that their clocks both reat
50. To the observers on Lisa’s ring~see Fig. 1! Bart’s clock
flies by at speedv rel52v/(11v2/c2). ~Recall that relative
speeds do not add simply in special relativity.! Due to time
dilation, Lisa’s team observes Bart’s clock ticking mo
slowly than their own clocks by a relative Lorentz factorg rel

that works out to beg rel5(11v2/c2)/(12v2/c2). Since
Bart’s clock agrees with Lisa’s as he passes her att50, time
dilation means that his clock will lag behind the clock of t
next of Lisa’s observers that he passes. As he passes su
sive members of Lisa’s observing team, his clock should
seen to lag further and further behind. One half-rotation la
1016 Am. J. Phys.68 ~11!, November 2000 http://ojps.aip.or
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the observer he passes will be Lisa. We conclude that w
Bart passes her their clocks will disagree; Bart’s clock m
lag behind Lisa’s.

This is nonsense, of course. Very convincing argume
support our intuition that Bart’s and Lisa’s clocks will agre
at each meeting if they agree at the first meeting. One
these arguments follows from the point of view of the lab
ratory observers. They see Bart and Lisa tracing out ident
motions, except one is going clockwise and the other co
terclockwise. This ‘‘handedness’’ of the motion can have
effect on the rate of ticking of clocks, so the clock of Ba
and the clock of Lisa must tick off the same number
seconds between meetings~though neither ticks off the sam
number of seconds as the Lab clocks!. Another obvious
‘‘twin’’ argument further convinces us that Bart’s cloc
cannot lag Lisa’s at their subsequent meetings: In the v
same way we argued that Bart’s clock must lag behind Lis
we could have argued~based on a corps of special relativi
observers on Bart’s ring! that Lisa’s clock will lag behind
Bart’s at future meetings.

‘‘Clearly’’ there is something wrong with our argumen
about time dilation and Bart’s clock, but what precisely
wrong?

II. CLOCK SYNCHRONIZATION ON A ROTATING
RING

Special relativistic time dilation must be considered in t
context of clock synchronization. Suppose that Lisa’s clos
neighbor in the counterclockwise direction is Milhouse. A
Bart passes first Lisa and then Milhouse, time dilation
inferred from the comparison of Bart’s clock with Lisa’s an
then with Milhouse’s. We have set up our parable so that
clocks of Bart and Lisa both readt50 at the first event. The
comparison at the second event~to determine whether Bart’s
clock lags, leads, or neither! depends on the setting of Mil
house’s clock, which in turn depends on howhis clock was
originally related to Lisa’s.

Time dilation will only be observed from a referenc
frame in which the clocks are appropriately synchroniz
Clarification of our paradox thus requires careful deconstr
tion of the clock synchronization issues implicit in the sit
ation we have described.5 One prescription for synchronizing
two clocks is that given by Einstein and called ‘‘Einste
synchronization’’ in the special relativity literature. In th
prescription for clocksA and B,6 ‘‘...a common time forA
andB...cannot be defined at all unless we establish by d
nition that the ‘time’ required by light to travel fromA to B
1016g/ajp/ © 2000 American Association of Physics Teachers
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equals the ‘time’ it requires to travel fromB to A. Let a ray
of light start @as shown in Fig. 2# at theA time tA from A
towardsB. At the ‘B time’ tB let it be reflected fromB in the
direction ofA, and arrive again atA in the ‘A time’ tA8 . The
two clocks are Einstein synchronized if

tB2tA5tA82tB . ’ ’ ~1!

The synchronization of clocks onrotating rings presents a
special challenge. Here we describe four ways one m
choose to synchronize such clocks. In the first two metho
the rings are imagined to be initially nonrotating, that
initially at rest in the Lab. The clocks are synchronized wh
at rest, and then the rings are set into rotation. In the last
methods, synchronization is done while the rings are alre
rotating.

A. Method 1

Before the rings are set into motion, the ring observe
sitting at rest in the Lab, may decide to synchronize th
clocks according to the principles of Einstein synchroni
tion, i.e., by exchanging light signals. Lisa, ensconced
point A, noting that her clock registerstA , fires a laser beam
at Milhouse, her ‘‘next door neighbor’’ in the countercloc
wise direction, who is stationed at pointB. At tB , he receives
and reflects the beam back to her; she receives the sign
tA8 . Lisa sends Milhouse a slip of paper upon which is wr
ten the value of (tA81tA)/2, with instructions that his clock
should have had that reading attB . Milhouse adjusts his
clock accordingly. This procedure is followed from observ
to observer around the ring, and we imagine the limit of
infinite number of observers with infinitesimal separatio
Einstein synchronization on the not-yet spinning rings th

Fig. 1. As viewed in a rotating frame in which Lisa’s ring is unmoving, Ba
moves in the counterclockwise direction, past the observers on Lisa’s
at a speedv rel52v/(11v2/c2).

Fig. 2. Einstein synchronization of clockB with clock A. A light signal is
sent from A to B and back toA. Clock B is adjusted so thattB5(tA

1tA8 )/2.
1017 Am. J. Phys., Vol. 68, No. 11, November 2000
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allows Lisa’s team to constitute themselves correctly a
special relativity reference frame; that is, Lisa’s observ
will measure the rate of a clock moving by them at speedv
to be too slow by 1/A12v2/c2.

With clocks synchronized in what appears to be an inc
trovertibly correct way, the rings are now uniformly set in
rotation.~Here ‘‘uniformly’’ means that all points on the ring
are treated identically.!

B. Method 2

Before the rings are set into uniform motion, that is, wh
they are at rest in the Lab frame, the clocks on Lisa’s r
can be synchronized by an even easier method. Upon rec
ing a flash from a ‘‘Big Lab Clock’’2 stationed at the cente
of rotation, the ring observers can all set their clocks to re
t50. It seems obvious~and is true!! that this method pro-
duces the same results as the classical Einstein synchro
tion used in the first stage of Method 1. As in Method 1, t
rings are gradually and uniformly put into motion after th
synchronization process is completed.

C. Method 3

In this method, Lisa’s crew chooses to synchronize th
clocks with their ring already in motion. A rather obviou
way to do this is to have a light flash at the center of rotati
all observers having been instructed to set their clockst
50 at the moment they see the flash. This method is
same as Method 2 except that the rings are in motion w
the procedure is performed.

D. Method 4

In Method 4, Lisa and her team of observers attempt
employ Einstein synchronization on the already-rotat
ring. Lisa sends a light signal to Milhouse, the first obser
in the counterclockwise direction, and an infinitesimal d
tance from her. That observer sends back a light signal.
times of arrival of the light signals are used in the sa
manner as in Method 1 to synchronize the clocks. This s
chronization is then continued, proceeding around the ring
the counterclockwise direction.

E. Comparison

In Method 1, before the rings are put into rotation, t
clocks will be correctly synchronized for Lisa’s crew t
make standard special relativity observations. If the Lab
servers also have clocks that are correctly synchronized,
simultaneity will mean the same thing to Lisa’s observe
and to the Lab observers. When the clocks of each of Lis
observers strike midnight, the clock of each nearby Lab
server will have the same reading—say 2:23 a.m.

It is clear that this is also true for Method 2. Since t
‘‘flash at the center’’ process favors no particular location
the ring, a moment of simultaneity on the ring~the same
clock reading for all of Lisa’s observers! is also a moment of
simultaneity in the Lab~the same reading for all Lab ob
server clocks!.

This very same argument applies equally well to the s
chronization by Method 3. Though the ring is now movin
during the synchronization process, the ‘‘flash at the cent
again favors no particular observer. It follows that a mom

g,
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of simultaneity~all clocks have the same reading! on a ring
will also be a moment of simultaneity in the Lab.

From the above arguments we conclude that Methods 1
and 3 all provide the same sort of synchronization. As
will show in the following, Method 4 is different.

III. THE PARADOX RESOLVED

If Lisa and her nearest neighbor Milhouse were prope
synchronized to be part of a special relativity reference fra
moving through the Lab, then events~like the striking of
midnight! that are simultaneous to Lisa and Milhouse can
be simultaneous in the Lab frame. If Methods 1, 2, or 3
used for synchronization of ring clocks, then events that
simultaneous to Lisa and Milhouse will also be simultaneo
to the Lab observers. It follows that Lisa and Milhouse, a
more generally the entire set of observers on Lisa’s ring,
not correctly synchronized to constitute special relativity r
erence frames. This explains what we already know mus
true: There will be no lagging of Bart’s clock observed as
passes each of Lisa’s observers.For the relativistically inap-
propriately synchronized clocks of Lisa’s observers, there
no time dilation of Bart’s clock.

This conclusion may seem to some readers to evade
resolve, the paradox. We have explained away the awkw
implications of time dilation by using synchronization th
does not produce time dilation. We justify the inclusion
these ‘‘inappropriate’’ methods of synchronization with tw
arguments: First, this helps to emphasize the connection
tween clock synchronization and time dilation; second, a s
dent would ask why such obvious methods of synchron
tion are not used.

In any case, the paradox cannot be evaded if Lisa’s clo
are synchronized by Method 4. In this case, the clocks
Lisa and Milhouse are ‘‘correctly’’ synchronized. If Lisa an
Milhouse are negligibly separated on the ring, their readi
will differ negligibly from readings done in a standard sp
cial relativity reference frame that is instantaneously com
ing with them. Lisa and Milhousewill therefore observe
Bart’s clock to run slowly and Bart’s clockwill lag Mil-
house’s when they pass each other. The resolution of
paradox now takes a very different form: When Method 4
used, there will be a discontinuity in synchronization. Su
pose Einstein synchronization is used starting with Lisa, p
ceeding to Milhouse, and proceeding around the ring u
the clock of the last observer, call her Selma, is synch
nized. In the case that the angular separation of Lisa’s te
of observers is negligibly small, Lisa at angle 0 and Selma
angle 2p are at the same place. But their clocks will n
agree. Due to the discontinuity of Method 4 synchronizati
Selma’s clock will lead~i.e., will have a higher reading! than
Lisa’s by an amount that we show in the Appendix to
Disc5(2pR/c)(v/c)/A12v2/c2.

When calculated in detail, the time dilation of Bart
clock, moving past Lisa’s observers, turns out to show t
Bart’s clock will lag Selma’s by precisely the amountDisc,
when Bart reaches Selma. At the very same location
Selma is Lisa, whose clock lags Selma’s byDisc, and hence
agrees perfectly with Bart’s clock.

The Appendix gives the details of computation of the d
continuityDisc, and shows that this discontinuity makes tim
dilation compatible with the comparison of Lisa’s clock
Bart’s and to the clock of a Lab observer.
1018 Am. J. Phys., Vol. 68, No. 11, November 2000
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IV. CONCLUSION

The resolution of the paradox of the counterrotating tw
depends on the method that is used to synchronize clock
a ring. If the clocks are synchronized ‘‘uniformly’’~with no
particular position on the ring singled out!, then the resolu-
tion is that the observers so synchronized will not meas
any time dilation. If, on the other hand, the clocks are sy
chronized by Einstein synchronization, starting with one p
ticular observer, there will be a discontinuity in synchroniz
tion at the location of that observer, and this discontinu
permits both time dilation and the agreement of the twi
clocks at every meeting.

APPENDIX: DISCONTINUITY DUE TO METHOD 4
SYNCHRONIZATION

Figure 3 shows the three events needed to synchronize
clock of another observer with Lisa’s clock. Let us say th
Lisa is at Lab positionf50, and she will synchronize clock
with one of her observer friends at Lab anglef5Df. ~In
Fig. 3, the friend is shown as Selma, the last of Lisa’s o
servers, located atf5Df52p.! In the calculations below,
the coordinatef is measured relative to the Lab system. T
measureDf refers to the angular position of the observ
friend as measured on Lisa’s ring, but it has the same va
as observed in the Lab frame. In either frame it simply in
cates the angular displacement of the observer as a frac
of a complete circle. If the observer friend were diametrica
opposite Lisa, both the observers on Lisa’s ring and the L
observers would describe the angular difference asDf5p.

For definitiveness let us say that Lisa’s ring of observer
rotating through the Lab in the clockwise, or negative, dire
tion, at angular velocityv, as shown in the figure. This
means that Bart will be traveling in the counterclockwise,
positive, direction relative to Lisa’s observers; if Bart is to
observed by a synchronized team of Lisa’s observers, s
chronization must proceed in the counterclockwise directi

Event 1 of the synchronization procedure is for Lisa
send a photon in the positive direction. Let us say that t
event occurs at Lab timet50. At event 2, Lisa’s friend re-
ceives that photon and sends one back to Lisa in the nega
direction. Between events 1 and 2 the photon moves thro
the Lab according tof5ct/R, and the position of Lisa’s
friend is given byf5Df2vt. By solving these two equa
tions for the intersection of friend and photon, we find th
event 2 occurs at Lab angular location and at Lab time

f25
Df

11v/c
, t25

R

c

Df

11v/c
, ~2!

wherev[vR is the speed of Lisa’s observers through t
Lab. Between events 2 and 3, Lisa moves through the

Fig. 3. Method 4 used to synchronize Lisa’s clock with that of anoth
observer.
1018Cranor, Heider, and Price



s

e

a
at

t

-

on

m
y

A
e

ha

he
e-
c

d
rv
a’

ers

ri-
g is
fur-
ity

sses

ter

rve
ng

ing
th,

s.
rs,
as

nce
ow
ers
f

of
at

ion
rn
tem
e

an
ise
according tof5vt, and the photon from her friend move
through the Lab according tof5f22c(t2t2)/R. These
two motions intersect at event 3, at Lab time:

t352
R

c

Df

12v2/c2 . ~3!

Due to the time dilation of Lisa’s clock with respect to th
Lab system, Lisa’s clock will readt35t3 /g at event 3,
whereg[1/A12v2/c2, or t352(R/c)g. According to the
prescription for Einstein synchronization, Lisa’s friend,
f5Df, will be given instructions to adjust her clock so th
it would have read

clock setting at event 25~t31t1!/25t3/25~R/c!gDf
~4!

at event 2.
Now let us suppose that Lisa’s friend is Selma, atf

52p, so that she is at the same position as Lisa. At even
the Lab time, from Eq.~2!, is t25(R/c)Df/(11v/c), and
Lisa’s clock readst2 /g, while Selma’s Einstein synchro
nized clock readst3/25(R/c)gDf. Thus at event 2 Lisa’s
clock will lag Selma’s clock byt3/22t2 /g, and hence by

Disc5
t3

2
2

t2

g
5

2pRv
c2 g, ~5!

where we have usedDf52p.

1. Bart’s time dilation lag

Consider Bart moving in the counterclockwise directi
past Lisa’s observers, with his relative velocityv rel52v/(1
1v2/c2) and relative Lorentz factorg rel5(11v2/c2)/(1
2v2/c2). The rate at which Bart’s clock advances, co
pared to the readings on the clocks he passes, is given b
usual time dilation relationshipDtBart5DtLR /g rel . Here the
subscript ‘‘LR’’ indicates ‘‘Lisa’s ring.’’ Bart is comparing
clocks not with Lisa, but with other observers on her ring.
the completion of his circumnavigation of Lisa’s ring, h
will encounter Selma, and his clock will readtSelma/g rel ,
and hence will lag behind hers bytSelma(121/g rel). To find
Selma’s clock reading at that event we note that Lisa
moved through the Lab byp and therefore Lisa’s clock will
readp/~vg!. Selma’s must therefore read

tSelma5p/~vg!1Disc5
pg

v S 11
v2

c2D . ~6!

Bart’s reading will lag by

tSelmaS 12
1

g rel
D5

pg

v S 11
v2

c2D S 12
1

g rel
D52pgRv/c2. ~7!

But this is the same as the amountDisc, by which Lisa’s
clock lags behind Selma’s! Thus Bart’s clockdoesundergo
time dilation. It lags behind Selma’s clock. But due to t
discontinuity in synchronization, Lisa’s clock lags by pr
cisely the same amount, and Bart and Lisa will have clo
readings that agree, as of course they must.

2. Time dilation of a Lab observer

Consider now a Lab observer, that is, an observer fixe
position in the Lab frame. Suppose that such an obse
happens to be fixed at an infinitesimal distance from Lis
1019 Am. J. Phys., Vol. 68, No. 11, November 2000
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ring. Such an observer will be measured by Lisa’s observ
to be moving past them, as shown in Fig. 4, at speedv in the
counterclockwise direction. While a study of clock compa
sons between this observer and observers on Lisa’s rin
not necessary to resolve the Bart–Lisa paradox, it does
ther illuminate the role of the synchronization discontinu
on Lisa’s ring.

Let us suppose that at the moment the Lab observer pa
Lisa, his clock and Lisa’s clock both readt50. After a Lab
time 2p/v has passed, this Lab observer will encoun
Selma, and his clock will lag hers bytSelma(121/g) due to
time dilation. As above we can argue thattSelma is greater
than Lisa’s clock reading byDisc, and hencetSelma

52p/(vg)1Disc52pg/v. The amount by which the Lab
observer’s clock lags Selma’s is therefore (2pg/v)(1
21/g). Since Selma’s clock leads Lisa’s clock byDisc, this
means that the Lab clock will lead Lisa’s clock by

Disc2
2pg

v S 12
1

g D5
2p

v S 12
1

g D . ~8!

This lead is precisely what the Lab observer must obse
since, due to time dilation, Lisa’s clock has been ticki
slowly, relative to Lab clocks, by the factorg, as it has
moved through the Lab by an angle of 2p.

3. Synchronization around the ring versus comoving
synchronization

We have described Method 4 synchronization as be
carried out with light signals propagating on a circular pa
yet we have treated the observers on Lisa’s ring~aside from
the discontinuity! as if they were special relativity observer
More specifically, we have claimed that those observe
from Lisa to Selma, would measure the same time dilation
would observers in a properly synchronized inertial refere
frame. Here we give a detailed justification for this. We sh
that the Method 4 synchronization of two nearby observ
on Lisa’s ring differs negligibly from the synchronization o
a momentarily comoving inertial reference frame.

To do this we consider, just as we did in our discussion
Method 4 synchronization, Lisa and an observer friend
Df. As in the earlier discussion, event 2 will be the recept
of a photon by the friend, and the emission of the retu
photon. Let us invoke a Cartesian spatial coordinate sys
$x,y% in the Lab, as shown in Fig. 5, with origin at Lisa at th

Fig. 4. As viewed in a rotating frame in which Lisa’s ring is unmoving,
observer who is fixed in the Lab frame moves in the counterclockw
direction, past the observers on Lisa’s ring, at a speedv5vR.
1019Cranor, Heider, and Price
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moment (t50) of event 1, and with thex axis in the direc-
tion of the emitted photon. The Lab coordinates of even
are then

t5t2 , x5R sinf2 , y5R~12cosf2!, ~9!

where t2 and f2 are given in Eq.~2!. We now invoke an
inertial reference frame$t8,x8,y8% that is momentarily co-
moving with Lisa. That is, at event 1 this inertial frame
moving in the positivex direction with speedv5vR, so that
instantaneously Lisa is at rest in this frame. By a straightf
ward Lorentz transformation the time coordinates of even
in this momentarily comoving frame are

t85gS t1
v
c2 xD5gS t21

v
c2 R sinf2D

5
R

c
gDfS 1

11v/c
1

v/c

Df
sinS Df

11v/cD D .

~10!

Fig. 5. Method 4 synchronization~as viewed in the Lab frame! and a mo-
mentarily comoving inertial reference frame.
1020 Am. J. Phys., Vol. 68, No. 11, November 2000
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The setting on the clock of Lisa’s friend at event 2 is given
Eq. ~4!. It follows that this setting will lead the settingt8 in
the inertial frame byDt[(R/c)gDf2t8, or

Dt5
v/c

11v/c

R

c
gDfS 12

11v/c

Df
sinS Df

11v/cD D . ~11!

Suppose Lisa’s ring is occupied byN equally spaced observ
ers ~with the last observer, Selma, at the same position
Lisa!, thenDf52p/N. In the limit thatN is very large

Dt5
v/c

11v/c

R

c
g

2p

N S 12
N~11v/c!

2p

3sinS 2p

N~11v/c! D D ——→
N→`

O~N23!. ~12!

If the synchronization of Lisa’s ring were carried out fro
Lisa to Selma, by using momentarily comoving inerti
frames, the setting of Selma’s clock would be different
only NDt5O(N22) from the setting arrived at with Method
4. In the limit thatN is large ~i.e., in the limit thatDf is
small!, this is negligible.
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