A circular twin paradox
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In the special relativistic twin paradox presented here, each twin lives on one ring of a
counterrotating pair of infinitesimally separated rings, so that the twins travel on the same circular
path but in opposite directions. The observers on the ring of one twin should see the clock of the
other twin slowed by time dilation, but at each meeting of the twins symmetry demands that they
agree on the amount of time that has passed since their previous meeting. The resolution of the
paradox focuses attention on the relation of time dilation to clock synchronizatiorzoo®aAmerican
Association of Physics Teachers.

[. INTRODUCTION the observer he passes will be Lisa. We conclude that when
Bart passes her their clocks will disagree; Bart’s clock must

Twin paradoxes have played an important role in the pedal2g behind Lisa’s. o
gogical history of special relativity theory; generations of 1hiS is nonsense, of course. Very convincing arguments
physics students have been challenged by their professors $ypport our intuition that Bart's and Lisa’s clocks will agree

apply their newly minted understanding of relativistic prin- 8t €ach meeting if they agree at the first meeting. One of
these arguments follows from the point of view of the labo-

ciples to the resolution of these famously counterintuitive atory observers, They see Bart and Lisa tracing out identical
problems. Continuing in this venerable tradition, we presen otions, except one is going clockwise and the other coun-

a twin paradox here, but one that differs significantly fromterclockwise. This “handedness” of the motion can have no

the familiar rocket parable. Although this paradox appears ifyfect on the rate of ticking of clocks, so the clock of Bart
L|ghtman et al,” the solut|o'n provided th.ere is brief, math- 5nq the clock of Lisa must tick off the same number of
ematical, and formal, and is not accessible to the full rang@econds between meetingsough neither ticks off the same
of students for whom the paradox would be of interest. Someyumber of seconds as the Lab clock&nother obvious
elements of the resolution of the paradox are related to issueswin” argument further convinces us that Bart's clock
that have been discussed by several aufidisut the con-  cannot lag Lisa’s at their subsequent meetings: In the very
nection to our paradox is not straightforward. Here wesame way we argued that Bart's clock must lag behind Lisa’s
present an analysis that should be both mathematically angle could have arguetbased on a corps of special relativity
physically intelligible to beginning relativity students. In or- observers on Bart's ringthat Lisa’s clock will lag behind
der to optimize the accessibility of the basic ideas, we relBart’s at future meetings.
egate all calculations to the Appendix. “Clearly” there is something wrong with our argument
In our parable, Lisa, the protagonist of the paradox, livesabout time dilation and Bart's clock, but what precisely is
on a ring of radiusk with a team of observers stationed at Wrong?
every point on her ring. Bart lives on an identical ring. The
rings are negligibly separated, rotating at equal and oppositd. CLOCK SYNCHRONIZATION ON A ROTATING

angular velocityw about a common axis. This common axis RING

s at .res’t in a “Lab” frame, through which Bart, Lisa, and all Special relativistic time dilation must be considered in the
of Lisa’'s observers move at speed=wR. Bart moves eyt of clock synchronization. Suppose that Lisa’s closest
through the Lab at this speed in the counterclockwise direcheighpor in the counterclockwise direction is Milhouse. As
tion while the observers on Lisa’s ring move through the Labgart passes first Lisa and then Milhouse, time dilation is
at this speed in the clockwise direction. The twins will passinferred from the comparison of Bart's clock with Lisa’s and
each other periodically, their negligible separation allowingthen with Milhouse’s. We have set up our parable so that the
each to read the other’s clock. clocks of Bart and Lisa both read-=0 at the first event. The

At a certain moment, Bart and Lisa happen to be at thezcomparison at the second evét determine whether Bart's
same place, and they notice that their clocks both read clock lags, leads, or neithedepends on the setting of Mil-
=0. To the observers on Lisa’s ririgee Fig. 1Bart's clock  house’s clock, which in turn depends on hbig clock was

flies by at speed o= 2v/(1+v2/c?). (Recall that relative originally related to Lisa’s.

speeds do not add simply in special relativitpue to time Time dilation will only be observed from a reference
dilation, Lisa’s team observes Bart's clock ticking more frame in which the clocks are appropriately synchronized.

. : Clarification of our paradox thus requires careful deconstruc-
slowly than their own clocks by a relative Lorentz facta, tion of the clock synchronization issues implicit in the situ-

that works out to b?)’reﬁ(1+02/C2)/(1_1’2/C2)- Sincé  ation we have describédOne prescription for synchronizing
Bart's clock agrees with Lisa’s as he passes herdl, time  two clocks is that given by Einstein and called “Einstein
dilation means that his clock will lag behind the clock of the synchronization” in the special relativity literature. In this
next of Lisa’s observers that he passes. As he passes succgsescription for clocksA and B, “...a common time forA
sive members of Lisa’s observing team, his clock should bandB...cannot be defined at all unless we establish by defi-
seen to lag further and further behind. One half-rotation laterpition that the ‘time’ required by light to travel fromA to B

1016 Am. J. Phys68 (11), November 2000 http://ojps.aip.org/ajp/ © 2000 American Association of Physics Teachers1016



allows Lisa’s team to constitute themselves correctly as a
special relativity reference frame; that is, Lisa’s observers
will measure the rate of a clock moving by them at speed

to be too slow by 31 —v?/c?.

With clocks synchronized in what appears to be an incon-
trovertibly correct way, the rings are now uniformly set into
rotation.(Here “uniformly” means that all points on the ring
are treated identically.

B. Method 2
Before the rings are set into uniform motion, that is, when
Vel they are at rest in the Lab frame, the clocks on Lisa’s ring
Ny’ can be synchronized by an even easier method. Upon receiv-
/ ing a flash from a “Big Lab Clock’? stationed at the center
L4 of rotation, the ring observers can all set their clocks to read
Bart t=0. It seems obviousand is true) that this method pro-

. , ) . L . duces the same results as the classical Einstein synchroniza-
Fig. 1. As viewed in a rotating frame in which Lisa’s ring is unmoving, Bart . d in the first st f Method 1. As in Method 1. th
moves in the counterclockwise direction, past the observers on Lisa’s ringt,l_On used in the nirst stage 0 etho N S In _e 0 » (N
at a speed o= 2v/(1+v2/c?). rings are gradually and uniformly put into motion after the

synchronization process is completed.

equals the ‘time’ it requires to travel froBto A. Letaray . Method 3
of light start[as shown in Fig. Rat the A time t, from A

towardsB. At the ‘B time’ t; let it be reflected fronB in the In this method, Lisa’s crew chooses to synchronize their

direction of A, and arrive again a in the ‘A time’ t}. The clocks with their ring already in motion. A rather obvious
two clocks a}e Einstein synchronized if A way to do this is to have a light flash at the center of rotation,

all observers having been instructed to set their clocks to
tg—ta=ta—ts.” (1) =0 at the moment they see the flash. This method is the
The synchronization of clocks awtating rings presents a same as Method 2 except that the rings are in motion when

special challenge. Here we describe four ways one mighi'® Procedure is performed.
choose to synchronize such clocks. In the first two methods,

the rings are imagined to be initially nonrotating, that is,D. Method 4

initially at rest in the Lab. The clocks are synchronized while .
at rest, and then the rings are set into rotation. In the last two N Méthod 4, Lisa and her team of observers attempt to

methods, synchronization is done while the rings are alread§MPIOy Einstein synchronization on the already-rotating
rotating. ing. Lisa sends a light signal to Milhouse, the first observer

in the counterclockwise direction, and an infinitesimal dis-

tance from her. That observer sends back a light signal. The

A. Method 1 times of arrival of the light signals are used in the same
Before the rings are set into motion, the ring observersmanner as in Method 1 to synchronize the clocks. This syn-

sitting at rest in the Lab, may decide to synchronize theicchronization is then continued, proceeding around the ring in

clocks according to the principles of Einstein synchronizathe counterclockwise direction.

tion, i.e., by exchanging light signals. Lisa, ensconced at

point A, noting that her clock registetg, fires a laser beam g Comparison

at Milhouse, her “next door neighbor” in the counterclock- _ ) )

wise direction, who is stationed at poltAt tg, he receives In Method 1, before the rings are put into rotation, the

and reflects the beam back to her; she receives the signal @¢ks Wwill be correctly synchronized for Lisa’'s crew to
t.. Lisa sends Milhouse a slip of paper upon which is writ- Make standard special relativity observations. If the Lab ob-

o . . servers also have clocks that are correctly synchronized, then
ten the value of f+t,)/2, with instructions that his clock i itaneity will mean the same thing t)(; alisa’s observers
should have had that reading &f. Milhouse adjusts his and to the Lab observers. When the clocks of each of Lisa’s
clock accordingly. This procedure is followed from observergpservers strike midnight, the clock of each nearby Lab ob-
to observer around the ring, and we imagine the limit of anserver will have the same reading—say 2:23 a.m.
infinite number of observers with infinitesimal separation. |t is clear that this is also true for Method 2. Since the
Einstein synchronization on the not-yet spinning rings thus+iash at the center” process favors no particular location on

the ring, a moment of simultaneity on the ririthe same
clock reading for all of Lisa’s observers also a moment of

Q Q : * Q simultaneity in the Labthe same reading for all Lab ob-
server clocks
A B A B A B This very same argument applies equally well to the syn-

Fig. 2. Einstein synchronization of clod with clock A. A light signal is Chfpnizaﬂon by Met_hOd_ 3. Though the ring is now moving
sent fromA to B and back toA. Clock B is adjusted so thatg=(t, during the synchronization process, the “flash at the center”

+1p)/2. again favors no particular observer. It follows that a moment
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of simultaneity(all clocks have the same readjngn a ring
will also be a moment of simultaneity in the Lab.

From the above arguments we conclude that Methods 1, 2,
and 3 all provide the same sort of synchronization. As we
will show in the following, Method 4 is different.

Event 1 Event 2 Event 3
. THE PARADOX RESOLVED

Fig. 3. Method 4 used to synchronize Lisa’s clock with that of another

. . . observer.
If Lisa and her nearest neighbor Milhouse were properly

synchronized to be part of a special relativity reference frame
moving through the Lab, then eventike the striking of v cONCLUSION
midnight that are simultaneous to Lisa and Milhouse cannot
be simultaneous in the Lab frame. If Methods 1, 2, or 3 are The resolution of the paradox of the counterrotating twins
used for synchronization of ring clocks, then events that arelepends on the method that is used to synchronize clocks on
simultaneous to Lisa and Milhouse will also be simultaneousa ring. If the clocks are synchronized “uniformly(ivith no
to the Lab observers. It follows that Lisa and Milhouse, andparticular position on the ring singled guthen the resolu-
more generally the entire set of observers on Lisa’s ring, aréion is that the observers so synchronized will not measure
not correctly synchronized to constitute special relativity ref-any time dilation. If, on the other hand, the clocks are syn-
erence frames. This explains what we already know must behronized by Einstein synchronization, starting with one par-
true: There will be no lagging of Bart's clock observed as itticular observer, there will be a discontinuity in synchroniza-
passes each of Lisa’'s observetsr the relativistically inap-  tion at the location of that observer, and this discontinuity
propriately synchronized clocks of Lisa’s observers, there ipermits both time dilation and the agreement of the twins’
no time dilation of Bart's clock clocks at every meeting.
This conclusion may seem to some readers to evade, not
resolve, the paradox. We have explained away the awkwardppeNDIX: DISCONTINUITY DUE TO METHOD 4
implications of time dilation by using synchronization that gy NCHRONIZATION
does not produce time dilation. We justify the inclusion of
these “inappropriate” methods of synchronization with two  Figure 3 shows the three events needed to synchronize the
arguments: First, this helps to emphasize the connection betock of another observer with Lisa’s clock. Let us say that
tween clock synchronization and time dilation; second, a stutsa is at Lab positionp=0, and she will synchronize clocks
dent would ask why such obvious methods of synchronizayith one of her observer friends at Lab angbe=A . (In
tion are not used. . Fig. 3, the friend is shown as Selma, the last of Lisa’s ob-
In any case, the paradox cannot be _evaded if Lisa’s C|0Ck§ervers, located ap=A =2.) In the calculations below,
are synchronized by Method 4. In this case, the clocks ofe coordinatep is measured relative to the Lab system. The
Lisa and Milhouse are “correctly” synchronized. If Lisa and eagyrend refers to the angular position of the observer
Milhouse are negligibly separated on the ring, their readinggjeng as measured on Lisa’s ring, but it has the same value
will differ negligibly from readings done in a standard spe- 55 gpserved in the Lab frame. In either frame it simply indi-
cial relativity reference frame that is instantaneously COmoV¢gtes the angular displacement of the observer as a fraction
ing with them. Lisa and Milhousevill therefore observe 5 complete circle. If the observer friend were diametrically
Bart’s clock to run slowly and Bart's clockvill lag Mil- — 456site Lisa, both the observers on Lisa’s ring and the Lab
house’s when they pass each other. The resolution of thgiserers would describe the angular difference ge= .
paradox now takes a very different form: When Method 4 is For definitiveness let us say that Lisa’s ring of observers is

used,Etherte_wnl beha dl_scct)_ntln_mty |nds3;ncthron|z_taht|ﬁ_n. SUp'rotating through the Lab in the clockwise, or negative, direc-
pose EInstein synchronization IS used staring with Lisa, pro"on, at angular velocityw, as shown in the figure. This

. . : X fi
ceeding to Milhouse, and proceeding around thga rng untltneans that Bart will be traveling in the counterclockwise, or
the clock of the last observer, call her Selma, is synchro-

k . )] ositive, direction relative to Lisa’s observers; if Bart is to be
nized. In the case that the angular separation of Lisa’s tearlé

fob : lictibl i Li i le 0 and Sel bserved by a synchronized team of Lisa's observers, syn-
Of ODSErvers IS negligibly small, Lisa at angie U and Ssema af, o5 ation must proceed in the counterclockwise direction.
angle 2r are at the same place. But their clocks will not

Due to the di tinuity of Method 4 hronizati Event 1 of the synchronization procedure is for Lisa to
agree.’ ue to the discontinuity of Miethod 4 synchronizaliongg 4 photon in the positive direction. Let us say that this
Selma’s clock will leadi.e., will have a higher readinghan

Lisa’s by an amount that we show in the Appendix to beEVENt occurs at Lab time=0. At event 2, Lisa’s friend re-
Disc— 2y R/ 16)INI=vZcZ PP ceives that photon and sends one back to Lisa in the negative
isc=(2aR/c)(v/c) vores. direction. Between events 1 and 2 the photon moves through

When calculated in f:leta|l, the time dilation of Bart's ., *) ) according tap=Cct/R, and the position of Lisa’s
clock, moving past Lisa’s observers, turns out to show thag . o _ )
riend is given by¢=A ¢— wt. By solving these two equa-

Bart's clock will | Ima’ recisely the am . . . . )
wﬁgns %gﬁ[ reacr?egssseeln?; %p;heec \S/Zr{/tsgrﬁe ?g?zi;icc’)n glions for the intersection of friend and photon, we find that
| event 2 occurs at Lab angular location and at Lab time

Selma is Lisa, whose clock lags Selma’sDigc, and hence

agrees perfectly with Bart's clock. A R A¢
The Appendix gives the details of computation of the dis- ¢2:1+v/c’ 2= 1+o/c’

continuity Disc, and shows that this discontinuity makes time

dilation compatible with the comparison of Lisa’s clock to wherev=wR is the speed of Lisa’s observers through the

Bart’s and to the clock of a Lab observer. Lab. Between events 2 and 3, Lisa moves through the Lab

2
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according to¢p= wt, and the photon from her friend moves
through the Lab according t@= ¢,—c(t—t,)/R. These
two motions intersect at event 3, at Lab time:

R A¢
¢ 1-v?c? ©)

Due to the time dilation of Lisa’'s clock with respect to the
Lab system, Lisa's clock will read3=t;/y at event 3,
where y=1/\1—v?/c?, or r;=2(R/c)y. According to the
prescription for Einstein synchronization, Lisa’s friend, at
¢=A ¢, will be given instructions to adjust her clock so that
it would have read

clock setting at event 2(73+ 7)/2=13/2=(R/c) yA ¢
4

t3:2

at event 2.
Now let us suppose that Lisa’s friend is Selma, ¢at

Sy

/ ok
Lab

Observer

Fig. 4. As viewed in a rotating frame in which Lisa’s ring is unmoving, an
observer who is fixed in the Lab frame moves in the counterclockwise
direction, past the observers on Lisa’s ring, at a spee®R.

=2, so that she is at the same position as Lisa. At event Zn4 sych an observer will be measured by Lisa’s observers

the Lab time, from Eq(2), is t,=(R/c)A¢/(1+v/c), and
Lisa’s clock readst,/y, while Selma’s Einstein synchro-
nized clock readss/2=(R/c) yA¢. Thus at event 2 Lisa’s
clock will lag Selma’s clock byrs/2—t,/y, and hence by

B 27Rv
C2 Y

©)

where we have usefl¢p=27.

1. Bart's time dilation lag

Consider Bart moving in the counterclockwise direction
past Lisa’s observers, with his relative velocity=2v/(1
+v2?/c?) and relative Lorentz factory,e=(1+v?/c?)/(1

to be moving past them, as shown in Fig. 4, at spe@uthe
counterclockwise direction. While a study of clock compari-
sons between this observer and observers on Lisa’s ring is
not necessary to resolve the Bart—Lisa paradox, it does fur-
ther illuminate the role of the synchronization discontinuity
on Lisa’s ring.

Let us suppose that at the moment the Lab observer passes
Lisa, his clock and Lisa’s clock both reae-0. After a Lab
time 2#/w has passed, this Lab observer will encounter
Selma, and his clock will lag hers bagem{1—1/y) due to
time dilation. As above we can argue thafym,iS greater
than Lisa's clock reading byDisc, and hence 7ggma
=2m/(w7y)+Disc=2mvy/w. The amount by which the Lab
observer's clock lags Selma’s is therefore m(@ w)(1

—v?/c?). The rate at which Bart's clock advances, com-—1/y). Since Selma’s clock leads Lisa’s clock Bysc, this
pared to the readings on the clocks he passes, is given by thgeans that the Lab clock will lead Lisa’s clock by

usual time dilation relationshiptg,= At r/y.e- Here the
subscript “LR” indicates “Lisa’s ring.” Bart is comparing

clocks not with Lisa, but with other observers on her ring. At

the completion of his circumnavigation of Lisa’s ring, he
will encounter Selma, and his clock will reagkeima/ Yrel

and hence will lag behind hers byomd 1—1/v,). To find

2y

) 2
Disc— —~ =—
®

®

[1-5)- -3
1-— 1-—|.
Y w Y
This lead is precisely what the Lab observer must observe
since, due to time dilation, Lisa’s clock has been ticking

slowly, relative to Lab clocks, by the factoy, as it has

Selma’s clock reading at that event we note that Lisa hagoved through the Lab by an angle o2

moved through the Lab by and therefore Lisa’s clock will
read7/(wy). Selma’s must therefore read

U2

1+ —
CZ

. (6)

2

142
C2

Ty

. my
Tseima= T (wy) + Disc= o (
Bart’s reading will lag by
1
- 1- —) =27yRulc?. (7)

1
TSeIma( 1- —) ( )
Yrel Yrel

But this is the same as the amoubisc, by which Lisa’s
clock lags behind Selma’s! Thus Bart's clodkesundergo
time dilation. It lags behind Selma’s clock. But due to the
discontinuity in synchronization, Lisa’s clock lags by pre-

3. Synchronization around the ring versus comoving
synchronization

We have described Method 4 synchronization as being
carried out with light signals propagating on a circular path,
yet we have treated the observers on Lisa’s agjde from
the discontinuity as if they were special relativity observers.
More specifically, we have claimed that those observers,
from Lisa to Selma, would measure the same time dilation as
would observers in a properly synchronized inertial reference
frame. Here we give a detailed justification for this. We show
that the Method 4 synchronization of two nearby observers

cisely the same amount, and Bart and Lisa will have clockon Lisa’s ring differs negligibly from the synchronization of

readings that agree, as of course they must.

2. Time dilation of a Lab observer

a momentarily comoving inertial reference frame.

To do this we consider, just as we did in our discussion of
Method 4 synchronization, Lisa and an observer friend at
A¢. As in the earlier discussion, event 2 will be the reception

Consider now a Lab observer, that is, an observer fixed imf a photon by the friend, and the emission of the return
position in the Lab frame. Suppose that such an observgrhoton. Let us invoke a Cartesian spatial coordinate system
happens to be fixed at an infinitesimal distance from Lisa’§x,)} in the Lab, as shown in Fig. 5, with origin at Lisa at the
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The setting on the clock of Lisa’s friend at event 2 is given in
\ Eq. (4). It follows that this setting will lead the settirtg in
| the inertial frame byAt=(R/c)yA¢p—t’, or

1
h
'
'
1
|
'
!

_vlc R Al 1 1+vic [ Ad¢ 11
= Tiolcc ’R? A¢p SN Tore) ) (1)
Suppose Lisa’s ring is occupied byequally spaced observ-
y ers (with the last observer, Selma, at the same position as
X Lisa), thenA¢=2=/N. In the limit thatN is very large
vlc R 2w N(1+v/c)
! - ) ) “1t+vicc U N 2
Fig. 5. Method 4 synchronizatiofas viewed in the Lab frameand a mo-
mentarily comoving inertial reference frame. 20 N oo
X Si -3,
sin| N(l+v/c))> O(N™%) (12

moment (=0) of event 1, and with the axis in the direc- If the synchronization of Lisa’s ring were carried out from
tion of the emitted photon. The Lab coordinates of event Aisa to Selma, by using momentarily comoving inertial

are then frames, the setting of Selma’s clock would be different by
B o B only NAt=O(N~?) from the setting arrived at with Method
t=tz, Xx=Rsing,, y=R(1-coss,), ) 4. In the limit thatN is large (i.e., in the limit thatAd is

wheret, and ¢, are given in Eq.(2). We now invoke an small, this is negligible.

inertial reference framét’,x’,y’} that is momentarily co-

moving with Lisa. That is, at event 1 this inertial frame is 1a p. Lightman, W. H. Press, R. H. Price, and S. A. Teukolskygblem
moving in the positive direction with speed = wR, so that Book in Relativity and GravitatiotPrinceton U.P., Princeton, 197%p. 6
instantaneously Lisa is at rest in this frame. By a straightfor- a”d 7 and 138-140.

. A. Weber, “Measurements on a rotating frame in relativity, and the
Watrr? Lorentz ttranlsformanon thfe time coordinates of event 2T Wilson and Wilson experiment,” Am. J. Phy85 (10), 946-953(1997)
In this momentarily comoving frame are 0. Grtn, “Relativistic description of a rotating disk,” Am. J. Phy47
v (10), 869-876(1975.
t,+ —=Rsin ¢,2) “C. Giannoni and O. Girg “Rigidly connected accelerated clocks,” Am. J.
c Phys.47 (5), 431-435(1979.

v
t'= vl t+ ?X =y
51t is worth pointing out that manymost? special relativity paradoxes
exploit confusion about simultaneity. Clock synchronization can be con-
sidered a specific application of defined simultaneity.
8A. Einstein, “On the electrodynamics of moving bodies,” The Prin-
(10 ciple of Relativity(Dover, New York, 1952 pp. 37-55.

R
=—yA¢

C

1 +U/C .
1+wlc HI

Ad
1+vl/c
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