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The equations of motion of the relativisti@nharmonic oscillator are derived based on an
alternative Lagrangian formalism of relativistic mechanics using the proper time as the evolution
parameter. ©1999 American Association of Physics Teachers.

[. INTRODUCTION Similar to the manifestly Lorentz-covariant Lagrangian

formulation of relativistic mechanids,” Hamilton’s prin-
The simple harmonic oscillator and its extension to theciple is expressed as

relativistic case are important subjects in physics. They are

usually employed as the basis for modeling more compli- 5J L(x,x)dr=0, 1)

cated motion. Most of the students in physics are familiar 1

with the simple harmonic oscillator, but not its relativistic . o ) !

extension. That the relativistic extension of simple harmonidVith the variation in the world line between the two fixed

motion had not received complete treatment, as compared ®d points, E(ct(1),x(1)) and 2=(ct(2),x(2)). Then,

the relativistic generalization of constant acceleration, wa®roceeding with the variation, we have

pointed out by an interesting article in this jourfdh that 2 oL oL
article, the proper-time equations of motion of the relativistic f <— OXj+ —— &% |d7=0. 2
(anharmonics oscillator were derived based upon the usual 1T\ 0X 28

Lagrangian formalism of relativistic mechanics. Moreover,In general, the integration parametedepends on the mo-
the proper-time relativistic motion was analyzed in terms Oftion of the particle along the world line in the variation. That
an erffeetlve potential energy in an analogy with classmais the integration parameterin Eq. (2) is different along
mechanics. ' ; oo .
. : each world line. The variation in the world line also alters
The present article presents an alternative approach to tk{ﬁe integration limits of the two end point$1l) and «(2). It
relativistic extension of simple harmonic motion, based on :

an alternative Lagrangian formalism of relativistic mechan-Should be emphasized that the variation is taken so as to keep

ics which has been recently developed in terms of the prop e_two end points fixed, i.eﬁxM(1)=0_ and 5).(“(2.)2.0
time as the evolution paramefeThis alternative Lagrangian (#=0,1,2,3), not to keep the values of integration limit)
formalism of relativistic mechanics is closely analogous to@nd 7(2) fixed. The variation operation and the proper-time

the Lagrangian formalism of classical mechanics. Moreoverdifferentiation are interchangeable, that is,

this alternative Lagrangian formalism provides the concep- dx d
tual foundations for Schrbnger-like formalism of relativis- 5>'<j: 5(—' =——06x;, j=123. 3
tic quantum mechanicsSince some readers might be unfa- dr/ dr

miliar with this alternative Lagrangian formalism of Then, Eq.(2) becomes, after integration by parts,
relativistic mechanics, we first recapitulate this alternative

Lagrangian formalism. Then, this alternative Lagrangian for- (2 L d dL
malism is applied to the relativistic extension of the simple 1 2 9. dr ox.
harmonic oscillator. The proper-time equations of relativistic . ! !
motion are shown as an immediate consequence of this al- aL

ternative Lagrangian formalism. —2 o ox(1)=0. (4)

L
oxdr+ >, — (2
J J

Since dx;(1)=0 andéx;(2)=0, Eq.(4) is reduced to

Il. LAGRANGIAN FORMALISM OF RELATIVISTIC fz (ﬂ_ d ﬁ) ox.dr=0. 5)
MECHANICS IN TERMS OF THE PROPER- L\ axg drakg) T

TIME EVOLUTION PARAMETER Since the 6x; are independent variations, we have the

We start by considering the general form of the Lagrang-l“”lgr"’mge equations of relativistic motion

ian for a relativistic material particle ds(x,x) in terms of JL d dL _

the proper-timer as the evolution parameter. It should be 7~ g7 7% ~ 0 1=1.23. (6)
noted that the symbat in L(x,X) is the differentiation of ! !

position coordinate with respect to the proper time The  Since the canonical momentupr&L/m'(j , the Lagrange
proper timer for a material particle is related to the coordi- equations of relativistic motion are also expressed as
nate timet by dt=ydr, wherey=(1—v%/c?) 2 v is the

speed of the particle, and is th_e speed of light. Thugy ijczﬁ, j=1,2,3. @)
=x=dx/d7=(dx/dt)(dt/d7) = yx= yv. IX;
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The relativistic Hamiltonian is defined from the relativistic The quantityK can be thought of as an energy inclusive of

Lagrangian by

H(x;.p) = 2 PEX; —L(X;.%)). )
The total differential oH is

dH= 2(
From Eq.(8), we have also

de}j‘, xj—jTI(_de(j).
The second and fourth terms in the parentheses in(Hij.

cancel out, sinceijE&L/akj. Consequently, from Eqg6)
and(10) we have

x d P ) ©

(10

i aL
depJ+dex —d
Xj

dH:; (%;dpf—pidx;). (11)

Comparing Egs(9) and(11), the independence of the varia-

tions gives the Hamilton equations of relativistic motion:

de oH )

ar r9pJ’ 1=1,2,3, (129
and

dp} oH

'EF:'_EG’ j=1,2,3. (12b
Using the Poisson bracket

{M.N}=2, o ﬂﬂ} (13

ax, ﬂp] ap; IX;

the Hamilton equations of motion Eg&l2g and (12h) are
expressed as

D HL =123 14
ar - xpHE =123, (143
and
m .
—={pj.H} j=123. (14b)

Now, consider a relativistic particle moving in a conser-

vative force field of potentiaM(x). According to special
relativity, the energy—momentum relation is given as

(E—V)?—p?c?=m3c?, (15
wherep=mu, with u=dx/dr.
If we define a quantitK as
E2_ mZC4
K= me (18
then Eq.(15) can be rewritten as
p2
K=ot Ver (17
where
v _ 2EV-V? 18
= "omZ - (18
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the Newton-like relativistic kinetic energmu? and theef-
fectivepotential energyes .
We choose the relativistic Lagrangian as

L=2mu’— V. (19

It should be emphasized that the total enekgin the defi-
nition of the effective potential energy must not be consid-
ered, in advance, as lknownfunction depending upon the
variablesx andu explicitly, though the total energy indeed
contains the rest-mass energy, the kinetic energy, and the
potential energy. For a conservative system, the total energy
E is just a given constant. With a given total energy, the
relationship between the kinetic energy and the potential en-
ergy of the particle is determined from the Lagrange equa-
tions of motion with a suitable Lagrangian. The effective
potential Vo does not depend on explicitly, because the
potential V is independent ofi. From the definition of ca-
nonical momentum, we havq:)jc=aL/a>'<j=aL/auj=pj.
From the Lagrange equations of relativistic motion, Ej,

we have

dpj  (E- w(w

9. = 2 a i=1,2,3. (20
Sincedt= ydr, Eq. (20) becomes

o __ N 1,3 21

E - a_xjy J T A ( )

provided thatE —V=ymc?. Equation(21) is just the equa-
tion of motion in special relativity, {/dt)p=—VV. Also,

the relation E-V=ymc® is consistent with the given
energy—momentum relation E@¢L5). That is, the energy—
momentum relation is just a consequence of the Lagrange
equations of motion with the chosen Lagrangian. From the
chosen relativistic Lagrangian and the definition of the rela-
tivistic Hamiltonian Eq.(8), we have

2
H= P ——+ V.

>m (22

The relativistic HamiltoniarH is not the total energ¥, but
it is equal toK = (E?—m?c*)/2m¢2.

Furthermore, consider generally a particle of chame
moving in external electromagnetic fiel&sandB. Accord-
ing to special relativity, the relativistic energy—momentum
relation is

(E—ed)?— (23

e 2
P— c A) c?=m?c*.

Here, the scalar potentiab(x,t) and the vector potential
A(x,t) form a Lorentz-covariant four-vector. The four-vector
(d,A) is related to electromagnetic fiellsandB by

1A
E=-Vd- -

c at’ (24

and
B=V XA. (25

It should be noted thdE is thetotal energy of the charged
particle, whereask is the electric field. By using the defini-
tion of the quantityK, Eq. (23) can be rewritten as

Young-Sea Huang 143



e \2 festly Lorentz covariant, may indeed be invariant with re-
P— P A spect to all inertial frames.
= - 4 2 In the low-speed limit, that is, for classical mechanics, the
K Vet (26) e : ;
2m relativistic Lagrangian Eq(27) reduces to the classical La-
whereV4=(2EV—V?)/2mc?, andV=ed. grangian
Now, we choose the relativistic Lagrangian as 1 e
L=~ mv’+ —v-A—ed, (34)
1 e 2 C
L==mu?+ — u-A—Vegg. (27 , ,
2 c because is reduced tanv, andV is reduced te®, due

to |eb|<E~mc. Also, the relativistic Hamiltonian Eq.

Then, the canonical momentupi conjugate to the position i ; oo
il 1ug P (29) is reduced to the classical Hamiltonian

coordinatex is

2
e
oL e . P—-A
pi=—=p;+-A=P;, j=123. (28 ( c )
. &ui e : H=T+e<b, (35)
Then, from the given relativistic Lagrangian and the defini- _
tion of the relativistic Hamiltonian, we have with P=mv+(e/c)A. Consequently, the equations of mo-
o |2 tion for a low-speed particle in the electromagnetic fields,
( P— E A d Vv
H=—Zm +Ver (29 gt (MV)=e| B+ oxB), (36

are obtained from the classical Lagrangian B4} and the

Therefore, the relativistic Hamiltoniatl is equal to K Lagrange equations of motion in classical mechahfcs,

=(E?—m?c*)/2mc2.

Moreover, from the Lagrange equations of relativistic mo- L d dL _
tion, we have o ﬁ(ij:O’ j=1.23. (37
da p_+E _):_ (E-V) oV (E 9 (U-A) In the low-speed limit, sincey=1, we havedr=dt, and
dr{™ ¢! mc®  ax; \c/ X ' thus X;=dx;/dr=dx; /dt=X;. Therefore, the equations of

o nonrelativistic motion, Eq(37), are the low-speed limit of
1=1,2,3. B0 the equations of relativistic motion, E¢6). This alternative

The total differential @/d7)A; consists of two parts: the Lagrangian formalism for relativistic motion contains the La-

change of the vector potential with time at a fixed point ingrangian formalism for nonrefativistic motion as the low-

space, and the change due to motion of the particle from ongP€€d limit. This alternative Lagrangian formalism of rela-

point in space to another, that is, tivistic mechamcs is _analogous to the Lagrangian formalism
of classical mechanics, comparing Eg6), (27), and (29)

A with Egs.(37), (34), and(35), respectively.

dA,  dA dt
S dtdr 7 at

dr  dt dr "’

+ (v-V)A]}, j=1,2,3. (31

Sincedt= ydr, andu= yv, Egs.(30) and(31) give

dp; ab  10A;| e dA VA
F—e V'a—Xj—V- il

lll. THE EQUATIONS OF MOTION OF THE
RELATIVISTIC (AN)HARMONIC OSCILLATOR

ax; ¢ at

c
This alternative Lagrangian formalism is applied to the

j=1,2,3, (32 simple harmonic oscillator to obtain the equations of relativ-
. . istic motion. We consider the relativistic motion of a particle
provided thatE—V=ymc®. By using Eqs.(24) and (25, o rest massn in a one-dimensional harmonic oscillator po-
Eq. (32) is reduced to tential V(x) = tkx2, wherek is a constant. From the defini-
dp tion of the effective potential energy E(L8), we have

dt Ekx— (3 kx?)?2
This equation is just the equation of motion of a relativistic Veir= 2mc? '
particle in electromagnetic fields in accordance with the Lor- _
entz force law in special relativity. The alternative relativistic AIS0, from the chosen Lagrangian E(L9), we have the
Lagrangian formalism is consistent with special relativity. -agrangian

The nonmanifestly covariant electromagnetic force law Eq. 1 Ekx— (L kx?)2

(33), which holds in all inertial frames, is derived from the L 2

. (33

v
e| E+ -XxB
c

(38

o . . L= mx— 39
relativistic Lagrangian Eq(27), the mathematical form of 2 2mc® (39
which is not manifestly Lorentz covariant. Moreover, the : :

Lagrange equations of relativistic motion, E®), and the The canonical momentum is

Hamilton equations of relativistic motion, E¢L4), are not aL i

manifestly Lorentz covariant. This alternative relativistic La- ~ P= —z =mx=mu=ymo. (40)

grangian formalism provides another example showing that
the mathematical forms of laws of physics, though not mani-Then, according to the Lagrange equations, (Bij.we have
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dp (E- 1 k) These equations of motion, Eq&46) and (45), are the
L 2 kx=0. (41  proper-time equations of motion of the relativist@nhar-

dr mc monic oscillator, Eqs(15) and (16), as given in Ref. 1 and
Sincedt= ydr, this equation becomes the equation of rela-s%l"ed thgrenI’]. Thg E)jarametnzr(]addLagraLng!an gormahsm pro-
s : N ; T vides a simple and direct method to obtain the proper-time
tivistic motion of a particle in the potential(x) = zkx, equation of motion. Finally, it should be emphasized that the

dp concepts of effective energies are applicable not only to the

a“‘x: 0, (42) special case of the relativisti@nharmonic oscillator, but

) also to the relativistic extension of classical mechanics gen-
provided that erally.

E— kx?=ymc2. (43

This equation means that the total enekgig the sum of the
rest mass energync?, the relativistic kinetic energf=(y ~ ACKNOWLEDGMENT
—1)mc, and the potential energdkx?; that is
_ L2 The author gratefully thanks Dr. C. M. L. Leonard for his
E=mc*+ T+ k<. (44 yvaluable comments in the preparation of this article.

According to the Hamiltonian definition in Eq7), we have
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MINUTE PARTICULARS

When William Blake once gave his thinking attention to the perennial cry of those who
justified their deeds in the name of the common good, he had to conclude:

He who would do good to another must do it in Minute Particulars. General Good is the plea of the
scoundrel, hypocrite, flatterer; for Art and Science cannot exist but in minutely organized Particu-
lars.

The deepest, most pervasive theme of American educationism is the rejection of minutely
organized particulars for the sake of vaguely appreciated generalities. If the former are the sub-
stance of Art and Science, of what are the latter the substance?

Richard Mitchell, The Graves of Acadenigittle, Brown and Company, Boston, 198%. 206.
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