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The equations of motion of the relativistic~an!harmonic oscillator are derived based on an
alternative Lagrangian formalism of relativistic mechanics using the proper time as the evolution
parameter. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

The simple harmonic oscillator and its extension to
relativistic case are important subjects in physics. They
usually employed as the basis for modeling more com
cated motion. Most of the students in physics are fam
with the simple harmonic oscillator, but not its relativis
extension. That the relativistic extension of simple harmo
motion had not received complete treatment, as compare
the relativistic generalization of constant acceleration,
pointed out by an interesting article in this journal.1 In that
article, the proper-time equations of motion of the relativis
~an!harmonics oscillator were derived based upon the u
Lagrangian formalism of relativistic mechanics. Moreov
the proper-time relativistic motion was analyzed in terms
an effective potential energy in an analogy with class
mechanics.

The present article presents an alternative approach t
relativistic extension of simple harmonic motion, based
an alternative Lagrangian formalism of relativistic mech
ics which has been recently developed in terms of the pr
time as the evolution parameter.2 This alternative Lagrangia
formalism of relativistic mechanics is closely analogous
the Lagrangian formalism of classical mechanics. Moreo
this alternative Lagrangian formalism provides the conc
tual foundations for Schro¨dinger-like formalism of relativis-
tic quantum mechanics.3 Since some readers might be un
miliar with this alternative Lagrangian formalism
relativistic mechanics, we first recapitulate this alterna
Lagrangian formalism. Then, this alternative Lagrangian
malism is applied to the relativistic extension of the sim
harmonic oscillator. The proper-time equations of relativi
motion are shown as an immediate consequence of thi
ternative Lagrangian formalism.

II. LAGRANGIAN FORMALISM OF RELATIVISTIC
MECHANICS IN TERMS OF THE PROPER-
TIME EVOLUTION PARAMETER

We start by considering the general form of the Lagra
ian for a relativistic material particle asL(x,x́) in terms of
the proper-timet as the evolution parameter. It should
noted that the symbolx́ in L(x,x́) is the differentiation of
position coordinatex with respect to the proper timet. The
proper timet for a material particle is related to the coord
nate timet by dt5gdt, whereg[(12v2/c2)21/2, v is the
speed of the particle, andc is the speed of light. Thus,u
[ x́5dx/dt5(dx/dt)(dt/dt)5g ẋ5gv.
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Similar to the manifestly Lorentz-covariant Lagrangi
formulation of relativistic mechanics,4–7 Hamilton’s prin-
ciple is expressed as

dE
1

2

L~x,x́!dt50, ~1!

with the variation in the world line between the two fixe
end points, 15(ct(1),x(1)) and 25(ct(2),x(2)). Then,
proceeding with the variation, we have

E
1

2

(
j

S ]L

]xj
dxj1

]L

] x́ j
d x́ j Ddt50. ~2!

In general, the integration parametert depends on the mo
tion of the particle along the world line in the variation. Th
is, the integration parametert in Eq. ~2! is different along
each world line. The variation in the world line also alte
the integration limits of the two end pointst~1! andt~2!. It
should be emphasized that the variation is taken so as to
the two end points fixed, i.e.,dxm(1)50 and dxm(2)50
(m50,1,2,3), not to keep the values of integration limitt~1!
and t~2! fixed. The variation operation and the proper-tim
differentiation are interchangeable, that is,

d x́ j5dS dxj

dt D5
d

dt
dxj , j 51,2,3. ~3!

Then, Eq.~2! becomes, after integration by parts,

E
1

2

(
j

S ]L

]xj
2

d

dt

]L

] x́ j
D dxjdt1(

j

]L

]xj
dxj~2!

2(
j

]L

]xj
dxj~1!50. ~4!

Sincedxj (1)50 anddxj (2)50, Eq. ~4! is reduced to

E
1

2

(
j

S ]L

]xj
2

d

dt

]L

] x́ j
D dxjdt50. ~5!

Since the dxj are independent variations, we have t
Lagrange equations of relativistic motion

]L

]xj
2

d

dt

]L

] x́ j
50, j 51,2,3. ~6!

Since the canonical momentumpj
c[]L/] x́ j , the Lagrange

equations of relativistic motion are also expressed as

ṕ j
c5

]L

]xj
, j 51,2,3. ~7!
142© 1999 American Association of Physics Teachers



tic

a-

er
l

of

id-

d
the
rgy

he
en-
ua-
ve

nge
the
la-

m

l
or

-

The relativistic Hamiltonian is defined from the relativis
Lagrangian by

H~xj ,pj
c!5(

j
pj

cx́ j2L~xj ,x́ j !. ~8!

The total differential ofH is

dH5(
j

S ]H

]xj
dxj1

]H

]pj
c dpj

cD . ~9!

From Eq.~8!, we have also

dH5(
j

S x́ jdpj
c1pj

cdx́j2
]L

]xj
dxj2

]L

] x́ j
dx́j D . ~10!

The second and fourth terms in the parentheses in Eq.~10!
cancel out, sincepj

c[]L/] x́ j . Consequently, from Eqs.~6!
and ~10! we have

dH5(
j

~ x́ jdpj
c2 ṕ j

cdxj !. ~11!

Comparing Eqs.~9! and~11!, the independence of the vari
tions gives the Hamilton equations of relativistic motion:

dxj

dt
5

]H

]pj
c , j 51,2,3, ~12a!

and

dpj
c

dt
52

]H

]xj
, j 51,2,3. ~12b!

Using the Poisson bracket

$M ,N%[(
j

F]M

]xj

]N

]pj
c2

]M

]pj
c

]N

]xj
G , ~13!

the Hamilton equations of motion Eqs.~12a! and ~12b! are
expressed as

dxj

dt
5$xj ,H%, j 51,2,3, ~14a!

and

dpj
c

dt
5$pj

c ,H%, j 51,2,3. ~14b!

Now, consider a relativistic particle moving in a cons
vative force field of potentialV(x). According to specia
relativity, the energy–momentum relation is given as

~E2V!22p2c25m2c4, ~15!

wherep5mu, with u[dx/dt.
If we define a quantityK as

K[
E22m2c4

2mc2 , ~16!

then Eq.~15! can be rewritten as

K5
p2

2m
1Veff , ~17!

where

Veff[
2EV2V2

2mc2 . ~18!
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The quantityK can be thought of as an energy inclusive
the Newton-like relativistic kinetic energy12mu2 and theef-
fectivepotential energyVeff .

We choose the relativistic Lagrangian as

L5 1
2mu22Veff . ~19!

It should be emphasized that the total energyE in the defi-
nition of the effective potential energy must not be cons
ered, in advance, as aknown function depending upon the
variablesx and u explicitly, though the total energy indee
contains the rest-mass energy, the kinetic energy, and
potential energy. For a conservative system, the total ene
E is just a given constant. With a given total energy, t
relationship between the kinetic energy and the potential
ergy of the particle is determined from the Lagrange eq
tions of motion with a suitable Lagrangian. The effecti
potential Veff does not depend onu explicitly, because the
potentialV is independent ofu. From the definition of ca-
nonical momentum, we havepj

c5]L/] x́ j5]L/]uj5pj .
From the Lagrange equations of relativistic motion, Eq.~6!,
we have

dpj

dt
52

~E2V!

mc2

]V

]xj
, j 51,2,3. ~20!

Sincedt5gdt, Eq. ~20! becomes

dpj

dt
52

]V

]xj
, j 51,2,3, ~21!

provided thatE2V5gmc2. Equation~21! is just the equa-
tion of motion in special relativity, (d/dt)p52¹V. Also,
the relation E2V5gmc2 is consistent with the given
energy–momentum relation Eq.~15!. That is, the energy–
momentum relation is just a consequence of the Lagra
equations of motion with the chosen Lagrangian. From
chosen relativistic Lagrangian and the definition of the re
tivistic Hamiltonian Eq.~8!, we have

H5
p2

2m
1Veff . ~22!

The relativistic HamiltonianH is not the total energyE, but
it is equal toK5(E22m2c4)/2mc2.

Furthermore, consider generally a particle of chargee
moving in external electromagnetic fieldsE andB. Accord-
ing to special relativity, the relativistic energy–momentu
relation is

~E2eF!22S P2
e

c
AD 2

c25m2c4. ~23!

Here, the scalar potentialF(x,t) and the vector potentia
A(x,t) form a Lorentz-covariant four-vector. The four-vect
~F,A! is related to electromagnetic fieldsE andB by

E52¹F2
1

c

]A

]t
, ~24!

and

B5¹3A. ~25!

It should be noted thatE is the total energy of the charged
particle, whereas,E is the electric field. By using the defini
tion of the quantityK, Eq. ~23! can be rewritten as
143Young-Sea Huang
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K5

S P2
e

c
AD 2

2m
1Veff , ~26!

whereVeff[(2EV2V2)/2mc2, andV[eF.
Now, we choose the relativistic Lagrangian as

L5
1

2
mu21

e

c
u–A2Veff . ~27!

Then, the canonical momentumpc conjugate to the position
coordinatex is

pj
c[

]L

]uj
5pj1

e

c
Aj5Pj , j 51,2,3. ~28!

Then, from the given relativistic Lagrangian and the defi
tion of the relativistic Hamiltonian, we have

H5

S P2
e

c
AD 2

2m
1Veff . ~29!

Therefore, the relativistic HamiltonianH is equal to K
5(E22m2c4)/2mc2.

Moreover, from the Lagrange equations of relativistic m
tion, we have

d

dt S pj1
e

c
Aj D52

~E2V!

mc2

]V

]xj
1S e

cD ]

]xj
~u–A!,

j 51,2,3. ~30!

The total differential (d/dt)Aj consists of two parts: the
change of the vector potential with time at a fixed point
space, and the change due to motion of the particle from
point in space to another, that is,

dAj

dt
5

dAj

dt

dt

dt
5gF]Aj

]t
1~v–¹!Aj G , j 51,2,3. ~31!

Sincedt5gdt, andu5gv, Eqs.~30! and ~31! give

dpj

dt
5eS 2

]F

]xj
2

1

c

]Aj

]t D1
e

c S v–
]A

]xj
2v–¹Aj D ,

j 51,2,3, ~32!

provided thatE2V5gmc2. By using Eqs.~24! and ~25!,
Eq. ~32! is reduced to

dp

dt
5eS E1

v

c
3BD . ~33!

This equation is just the equation of motion of a relativis
particle in electromagnetic fields in accordance with the L
entz force law in special relativity. The alternative relativis
Lagrangian formalism is consistent with special relativi
The nonmanifestly covariant electromagnetic force law E
~33!, which holds in all inertial frames, is derived from th
relativistic Lagrangian Eq.~27!, the mathematical form o
which is not manifestly Lorentz covariant. Moreover, t
Lagrange equations of relativistic motion, Eq.~6!, and the
Hamilton equations of relativistic motion, Eq.~14!, are not
manifestly Lorentz covariant. This alternative relativistic L
grangian formalism provides another example showing
the mathematical forms of laws of physics, though not ma
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In the low-speed limit, that is, for classical mechanics,
relativistic Lagrangian Eq.~27! reduces to the classical La
grangian

L5
1

2
mv21

e

c
v–A2eF, ~34!

becausep is reduced tomv, andVeff is reduced toeF, due
to ueFu!E;mc2. Also, the relativistic Hamiltonian Eq
~29! is reduced to the classical Hamiltonian

H5

S P2
e

c
AD 2

2m
1eF, ~35!

with P5mv1(e/c)A. Consequently, the equations of m
tion for a low-speed particle in the electromagnetic fields

d

dt
~mv!5eS E1

v

c
3BD , ~36!

are obtained from the classical Lagrangian Eq.~34! and the
Lagrange equations of motion in classical mechanics,4,5

]L

]xj
2

d

dt

]L

] ẋ j
50, j 51,2,3. ~37!

In the low-speed limit, sinceg51, we havedt5dt, and
thus x́ j5dxj /dt5dxj /dt5 ẋ j . Therefore, the equations o
nonrelativistic motion, Eq.~37!, are the low-speed limit o
the equations of relativistic motion, Eq.~6!. This alternative
Lagrangian formalism for relativistic motion contains the L
grangian formalism for nonrelativistic motion as the low
speed limit. This alternative Lagrangian formalism of re
tivistic mechanics is analogous to the Lagrangian formal
of classical mechanics, comparing Eqs.~6!, ~27!, and ~29!
with Eqs.~37!, ~34!, and~35!, respectively.

III. THE EQUATIONS OF MOTION OF THE
RELATIVISTIC „AN…HARMONIC OSCILLATOR

This alternative Lagrangian formalism is applied to t
simple harmonic oscillator to obtain the equations of rela
istic motion. We consider the relativistic motion of a partic
of rest massm in a one-dimensional harmonic oscillator p
tential V(x)5 1

2kx2, wherek is a constant. From the defin
tion of the effective potential energy Eq.~18!, we have

Veff5
Ekx22~ 1

2 kx2!2

2mc2 . ~38!

Also, from the chosen Lagrangian Eq.~19!, we have the
Lagrangian

L5
1

2
mx́22

Ekx22~ 1
2 kx2!2

2mc2 . ~39!

The canonical momentum is

p5
]L

] x́
5mx́5mu5gmv. ~40!

Then, according to the Lagrange equations, Eq.~6!, we have
144Young-Sea Huang
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dp

dt
1

~E2 1
2 kx2!

mc2 kx50. ~41!

Sincedt5gdt, this equation becomes the equation of re
tivistic motion of a particle in the potentialV(x)5 1

2kx2,

dp

dt
1kx50, ~42!

provided that

E2 1
2kx25gmc2. ~43!

This equation means that the total energyE is the sum of the
rest mass energymc2, the relativistic kinetic energyT5(g
21)mc2, and the potential energy12kx2; that is

E5mc21T1 1
2kx2. ~44!

According to the Hamiltonian definition in Eq.~7!, we have
H5p2/2m1Veff . The Hamiltonian~effective total energy! H
is the sum of theeffectivekinetic energyp2/2m5 1

2mu2 and
the effectivepotential energy. The Hamiltonian is not equ
to the total energyE, but is equal to (E22m2c4)/2mc2

which is a constant of the motion. By settingk[mv2 and
g0[E/mc2, Eq. ~43! is rewritten as

dt

dt
1

v2x2

2c2 5g0 , ~45!

and Eq.~41! is rewritten as

d2x

dt2 1v2x
dt

dt
50. ~46!
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These equations of motion, Eqs.~46! and ~45!, are the
proper-time equations of motion of the relativistic~an!har-
monic oscillator, Eqs.~15! and ~16!, as given in Ref. 1 and
solved therein. The parametrized Lagrangian formalism p
vides a simple and direct method to obtain the proper-t
equation of motion. Finally, it should be emphasized that
concepts of effective energies are applicable not only to
special case of the relativistic~an!harmonic oscillator, but
also to the relativistic extension of classical mechanics g
erally.
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MINUTE PARTICULARS

When William Blake once gave his thinking attention to the perennial cry of those who
justified their deeds in the name of the common good, he had to conclude:

He who would do good to another must do it in Minute Particulars. General Good is the plea of the
scoundrel, hypocrite, flatterer; for Art and Science cannot exist but in minutely organized Particu-
lars.

The deepest, most pervasive theme of American educationism is the rejection of minutely
organized particulars for the sake of vaguely appreciated generalities. If the former are the sub-
stance of Art and Science, of what are the latter the substance?

Richard Mitchell,The Graves of Academe~Little, Brown and Company, Boston, 1981!, p. 206.
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