Relativistic transformations of light power
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Using a photon-counting technique, we find the angular distribution of emitted
and detected power and the total radiated power of an arbitrary moving source.
We compare these expressions to the incorrect or incomplete expressions
previously reported. We use the technique to verify the predicted effect of the
earth’s motion through the cosmic blackbody radiation,

INTRODUCTION

In the course of a recent investigation' on the appear-
ance of stars from a relativistic spaceship, we came to realize
that the transformation of the intensity of light is a little
appreciated aspect of special relativity theory. Of the many
references? on the visual appearance of rapidly moving
objects, the only one3 which treated intensity at all turned
out to be incorrect. The widely used textbooks on relativistic
electrodynamics*> do not address the problem. Moreover,
one of them repeats an incomplete statement® on the
transformation of total radiated power which could mislead
an unwary reader to use the conclusion in a situation where
it does not apply. These errors and misconceptions have
propagated.’

In this investigation a technique of counting photons is
used to develop the transformations for the angular distri-
butions of emitted and detected power, and for the total
emitted power. These transformations are then related to
one another and to the transformation for the intensity of
plane waves, and compared to the incomplete or incorrect
transformations previously known. An example which
shows the distinction between the power absorbed by a fixed
detector and the power emitted by a moving source is pre-
sented in an appendix. In another appendix the photon
counting technique is used to recalculate the effect of the
earth’s motion through the cosmic blackbody radiation at
~3 K.

DERIVATION OF TRANSFORMATIONS

Let us define the reference frames to be used. Frame S
(proper frame) is defined by the source and is not neces-
sarily inertial. Frame S’ (instantaneous proper frame) is
inertial and instantaneously coincides with frame Sy. Frame
S (frame of observation) is an inertial frame relative to
which the source is moving at velocity v. The usual Lorentz
transformation along the z-z’ axes connects frame S and
frame S’ (or So). :

Consider a photon which has propagation vector (k’; k')
= (k’; k’ sinf’ cos¢’, k’ sint’ sing’, k’ cos#’) in frame S’. In
frame S the same expression applies except with all primes
removed. The usual expressions for aberration and angle-
dependent Doppler effect connect the two representations.
We shall need the following:

k=Dk'=~v( + Bcost)k’, (N
costl = (cost’ + B)/(1 + Bcost), 2)
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6=, (3)
cos’ = (cosf — B)/(1 — Bcosh), (4)
D =vy~I{1 - Bcost)~!. (5)

The last two of these are found from the inverse of the Lo-
rentz transformation which gives the first two. A group of
photons may be associated with the solid angle d)’ =
d(cosf’)d¢’ in frame S’ and with dQ = d(cos#)d¢ in frame
S. The connection between the two, found by differentiating
Egs. (2) and (3), is

dQ=(1 -85+ Bcost)2dQY =D-"2dQ. (6)
Now let us describe the emission of radiation by the
source in terms of photoris. In frame S’ or Sg, the number

of photons emitted during time d¢’ and having propagation
vector in the increment dk’d{Y is given by

dN = n’ (K )dk'dQ'dr’.

When we examine these same photons in frame .S, we see
that they are emitted during time df = ydt’ (time dilata-
tion) and into the increment dkd{Q. Since it is same number
of photons in either frame, we write

dN = n(k) dkdQdt.

Upon inserting the transformations of all the differentials,
we find the transformation of the rate of emission of pho-
tons

n(k) = n'(k")D/y. (7

To find the angular distribution of radiated power, multiply
by the photon energy hAck and integrate over all wave
numbers

PRy = " hekn(k)dk = (97—3) " hoken aeyaie
= (%3) P'(k') = DX(1 + Beost)P' (k). (8)

The luminosity of the source is the total power emitted into
all solid angle

L= j; P(k)dQ = j; PI(E)(1 + Beost)d
=L'+8 ﬁ cost P’ (k')dSY". 9)
This relationship for luminosity can be found in other
ways as well. Let us consider that the system consists only

of the source and its radiation. Then the source acts as a
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photon rocket and is not inertial. Its proper (rest) mass M
is continuously decreasing to provide the proper lumi-
nosity

—d(Mc?)
—a (10)

In frame S its four-vector velocity (#%u) = ("yc;yv) is not
constant. The energy still in the source is £ = Mcu®, and
the luminosity is given by
_—dE _ _ (@) ‘{d(McuO))
\ dt()

LO=L’=

dt
_ (_c_) (cuOdM+ Mcduo)

uf ditg dtg
Mc2/u®du®
_L_Céo_)L_ an

The second term involves the time component of the four-
vector acceleration. By the Lorentz transformation we re-
write it in terms of the local acceleration a”:

L=L — McBa' (12)

The equation of motion of a photon rocket can be
written®

=’/

Ma’ = -G/, (13)

where G’ (the negative of the thrust) is the rate at which
momentum is emitted into the exhaust (radiation) in the
proper frame. That in turn can be expressed in terms of the
rate of emission of photons

G = f hKn'(K)dk'dSY = j: kP (kRye=1d%.

(14)

When this is inserted into Eq. (12) we again obtain Eq.
9).

The expression [Eq. (8)] for the angular distribution of
the power emitted from a moving source is not particularly
useful, since that quantity is not directly measurable. What
one measures is the power received at a detector at some
distance from the source, and that quantity transforms
differently.

In frame S” the source is at rest at the origin as it emits
radiant energy at the rate P’(k’)d{l’ into the solid angle
d{¥. As the radiation propagates it stays in that solid ang]e.
Thus the angular distribution of the detected power Q’(k’)
is equal to the (retarded) angular distribution of emitted
power P/(k’). Let us imagine that the radiation consists of
radial streams of photons, and that the photons in the solid
angle d€)’ are spaced at radial separation {” [see Fig. 1(a)].
Thus the world line of the ith photon of this stream is de-
scribed by

x; = sin#*cos¢’(ct’ — i{’),
y; = sind’sing’(ct’ — i§"),
z = cost(ct’ —i{’).

When we transform to frame .S, the world line of this same
photon is described by

(15)

x; = sinf cosep(ct — vi{’),
yi = sinf sing(ct — vi{’),
z; = cosB(ct — vi{) + vyBi{’.

(16)
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Fig. 1. (a) Stream of photons measured simultaneously in frame S/, in
which the source is at rest. The spacing is {. (b) The same stream of
photons measured simultaneously in frame S, in which the source is moving
along the z axis. The spacing along the direction of propagation is

/D

This stream of photons is propagating in the aberrated di-
rection £, but they are offset in echelon because of the
motion of the source in this frame [see Fig. 1(b)]. To de-
termine their spacing along the direction of propagation,
let us take the scalar product of r; with the propagation
vector

ker; = k[ct — iy (1 — Bcosb) ] = k(ct — i{'/D). (17)

We identify the spacing as {"/D. (This same result can be
found from the invariance of k¢t — k-r;.) Thus the flux of
photons into a detector is increased by this factor D, while
the energy of each photon is increased by another factor D
and the stream of photons is compressed in solid angle by
yet another factor D? [Eq. (6)]. Altogether we find that the
angular distribution of detected power transforms as

Q(k) = D*Q' (k). (18)

This is obviously quite different from the transformation
of the radiated angular distribution [Eq. (8)].

For completeness, let me restate the transformation for

the intensity (power per unit area) of a plane wave, or

equivalently, of a beam of photons propagating parallel. For

a beam of photons which transform according to Egs.
(1)-(5), the intensity transforms as

I1=D2r. (19)

This can be derived in several ways.? The method of
counting photons analogous to that used here ascribes one
factor D to the energy of each photon and the other factor
D to the density of photons in space.

Figure 2 shows the three unique transformations [Egs.
(8), (18), and (19)].

DISCUSSION

" The transformations found here for angular distribu-
tions of emitted and detected power and for luminosity [Egs.
(8), (9), and (18)] are remarkable in that they have ap-
parently never before been presented correctly. There are
incomplete or incorrect statements on luminosity and on
emitted angular distribution in the literature, while the
difference between emitted and detected power distributions
is typically!? attributed to the difference between the in-
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Fig. 2. Factors of power transformations as functions of colatitude in the
frame of observation, for 8 = 0.9. Curve 4: D3/, the ratio of angular
distributions of emitted power. Curve B: D%, the ratio of angular distri-
butions of detected power. Curve C: D2, the ratio of intensities of a plane
wave.

crement of detection time and the increment of the retarded
time of emission.

There are two leveis at which errors, omissions, or mis-
conceptions have crept into previous work. At the first level
is the usual argument57 which leads to the conclusion that
the luminosity is invariant, in apparent contradiction to Eq.
(9). The syllogism can be paraphrased as follows. “Both the
radiated energy and the time interval are the fourth com-
ponents of four vectors and transform identically. There-
fore, their ratio is invariant.” The transformations can be
identical only if the two complete four-vectors are parallel
in every frame. The displacement between two event points
on the source’s world line, of which the time interval is a
component, is purely timelike in the proper frame. The
radiated energy momentum must be purely timelike in the
same frame. That is, the radiation must be sufficiently
symmetric that there is no thrust of the photon rocket. This
happens to be true for the cases of greatest interest—iso-
tropic radiation and the dipole radiation of an accelerated
electron. For either of those systems the luminosity is indeed
invariant. Since this condition is not true for arbitrary
sources, the syllogism should be restated in a form which
is generally correct.

At the second level is a logical fault which has been em-
ployed?” to find a transformation of the angular distribution
of emitted power, which does not agree with Eq. (8). In that
backward argument it is asserted that since the luminosity

is invariant [sic], the product P(k)dQ must therefore be -

invariant. Thus one concludes P(k) = D2P' (k). In actu-
ality, in order for f 4x P(k)dS2 to be equal to f 4, P'(k")d’,
it is sufficient but not necessary that P(k)d{? be invariant.
In one frame this quantity could be multiplied by any
function of angle which has a weighted average value of
unity, and the luminosity would still be invariant. The
particular function (1 + 3 cosf”) which was found and in-
cluded in Eq. (8) has exactly unity as its weighted average
value when P’(k’) has sufficient symmetry.

[ suspect that this misconception about the emitted an-
gular distribution may have arisen from an analogy to
certain nuclear physics experiments. When one is counting
photons emitted by a moving source (e.g., 7% — vy + ), the
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number of counts in a solid angle defined by the photons
themselves is invariant. It follows that the angular distri-
bution of counts transforms as the inverse of solid angle.

. However, here we are concerned with power, the rate of

emission of energy. The effects of time dilatation upon rate
and of the Doppler shift upon photon energy must be in-
cluded. .

Let us now reconcile the difference between P(k)dQ the
power radiated into solid angle {2 by the moving source,
and Q(k)dQ, the power detected by a fixed detector in the
same solid angle. From Eqs. (8) and (18) plus the equality
of P’(k ) and Q’(k ), we have

P(k) — Q(k) = (D3/v)P' (k') — D*Q' (k")
-D*Q'(k")(1 ~ 1/yD)
—BcosfQ(k).

(20)

When this is multiplied by d€2 we recognize it as the state-
ment of energy conservation in a time-dependent volume.
The volume is the cone shown in Fig. 3, with its apex at the
source and its base at the detector. The first term on the left
side is the power entering this volume and the second term
is the power leaving it. The right side is the rate of change
of the energy contained in the volume, due to the fact that
the volume is changing.

The first conclusion from this investigation is that the
“headlight” effect upon the angular distribution of power
from a moving source is far more pronounced than predicted
by Weisskopf. For a source which is isotropic in its proper
frame, the detected power per unit solid angle will be given
by curve B of Fig. 2. By contrast, Weisskopf stated that he
was considering the emitted power (curve 4) but presented
an expression equivalent to curve C. This mistake in the
intensity does not invalidate the main content of his paper,
on the apparent rotation of a moving object. Secondly, al-
though the argument employed by Jackson and others is
incomplete, the conclusion is correct that the luminosity is
invariant for the dipole radiation of an accelerated electron.
All derivations based directly upon that invariance will be
unaffected. Thirdly, the transformation found here for the
angular distribution of detected power should allow a
somewhat simplified derivation of the properties of syn-
chrotron radiation.
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Fig. 3. Volume instantaneously occupied by photons propagating in a
particular solid angle is outlined by solid lines. The solid angle is defined
by dashed lines from the retarded position of the source. (Any displacement
of the source due to its acceleration is ignored.)
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Fig. 4. (a) Laser rocket in its proper frame. The beam of area 4p and in-
tensity /o propagates at angle #’. (b) In frame S the rocket moves along
the z axis at velocity v. The beam propagates at angle & and has area Ag
normal to that direction (dashed lines). The volume occupied by the beam
at a single instant 7 is shown by solid lines. (Any displacement of the rocket
due to its acceleration is ignored.)

APPENDIX A

As a simple example which shows the distinction be-
tween emitted power and detected power for a moving
source as well as the luminosity transformation, let us
consider an idealized laser rocket. The proper luminosity
Lg is emitted as a uniform collimated beam of proper area
Ajg. The proper intensity of the beam is /o = Lo/ Ao. In the
instantaneous proper frame S’ the beam is at angle ¢’ to the
velocity v, with which the laser and frame S’ are moving
relative to frame S [see Fig. 4(a)]. The Doppler factor
for the transformation to frame S is D = y(1 + Bcost’). In
frame S the beam propagates at the aberrated angle 6 but
the cross-sectional area normal to the direction of propa-
gation is invariant with value Ag. The intensity measured
in frame S is I = D21, so that a detector which intercepts
the whole beam will absorb power /4¢ = D?L,. The beam
between the laser and the detector occupies a volume which
is changing at the rate —vAgcost [Fig. 4(b)]. The radiant
energy in that volume is changing at the rate (I/c)
X (=vAocosf) = —Bcosd D2Ly. The sum of this last
quantity and the power absorbed in the detector is equal to
the luminosity in this frame, i.e., the power emitted by the
laser at the retarded time corresponding to the time of ab-
sorption

L= D2Ly— BcosBD2Ly = LoDy = Lo(1 + Bcost’).
This is equivalent to Eq. (9), when the entire emission oc-
curs at the single angle §'.

APPENDIX B

As another example of the technique of counting pho-:

tons let us predict the effect of the earth’s motion through
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the cosmic blackbody radiation at ~3 K. The source frame
S is the proper frame of the radiation, i.e., the frame in
which the radiation is isotropic. Frame S is the frame of the
earth, which is moving at velocity —v relative to frame
S

In frame S’ the number of photons in volume dV” which
have propagation vector k’ in the increment dk’d€}’ is given

by the blackbody relation

dN = 2727 3[exp(hck’/kgT’) — 117" k’2dk’dV dV’,

where the Boltzmann constant is designated &z to distin-
guish it from wave number. This same number of photons
viewed in frame S will have propagation vector k in the
interval dkd(2, and will occupy volume dV. The differentials
transform according to dk’ = D~dk, d<Y = D%d{}, and dV’
= DdV, so that we find

dN = 272 3[exp(hck/ksgDT’) —1]'k2dkd 2 dV.

All the factors of D cancel out except the one which mul-
tiplies 77 in the Planck factor. Thus the only effect of the
motion is to make the radiation temperature be dependent
upon angle

T=DT =T~"(1—Bcost)™!
= T’(1 + Bcosh), for 8 K 1.

This same result has been found by a different scheme for
counting photons,!! and by transforming the stress-en-
ergy-momentum tensor of the radiation field.!? This an-
isotropy has indeed been observed.!?
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