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We rederive the relativistic transformations of light intensity from compact
sources to show where and how the transformation of solid angle contributes. We
discuss astrophysical and other applications of the transformations.

INTRODUCTION

Two recent articles in this Journal have presented dif-
ferent aspects of the relativistic transformation of light
intensity from compact sources (e.g., stars). In the first! the
observer was considered to be moving, and in the second?
the source was considered to be moving. Different expres-
sions for the transformation were found in the two cases,
which would seem to indicate either a mistake or an ap-
parent violation of the principle of relativity. The difference
lies in whether or not one takes into account the transfor-
mation of the solid angle associated with a collection of
photons. In this investigation both expressions are rederived
in yet another way to show that they are properly different
in the way solid angle is treated. In this work the process of
detection is emphasized, whereas in the earlier works at-
tention was concentrated upon emission and propagation.
We see that the intensity transformation for the special case
of stars or galaxies receding along the line of sight has been
known for decades. Other consequences of the solid-angle
transformation are discussed for both moving sources and
moving observers.

DERIVATION OF TRANSFORMATIONS

Let us consider the source to be fixed at the arbitrary
point r in reference frame S. The source will be described
in terms of the photons it emits. Each photon in turn is
characterized by its propagation four vector (k; k). Let us
specify that during a time interval dt the source emits a
number of photons with k in the increment dk d€2 given by
n(k)dkdQdt. As the photons propagate away, the same
number crosses any fixed surface within the solid angle 4
during an equal interval dt. Let us place a detector with
directed aperture o at the origin (Fig. 1). It presents normal
area i-o to the radiation and subtends solid angle i-o/r? as
viewed from thé source, where i is a unit vector directed
from source to origin. Thus r = —ri, and k = ki for the
photons which are detected. The number of photons de-
tected during dt is

dN, = n(k)dkdti- a/r?. (n

Each photon has energy hAck, so that the energy received
during dt is

dE = j; " hekn(k)dk dti - o/r>. (2)

This can be expressed as an intensity (energy per unit area
per unit time)

dE = ‘ﬁ) ® hekn(k)di/r?. 3)

Io(r) = oy
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It can also be expressed in terms of a detected angular dis-
tribution (energy per unit solid angle per unit time)

n="tE _ (-
Q) = o= = J; hekn(k)dk. 4)

Now let us consider that a detector described by aperture
s is moving at velocity v = fc, relative to frame S. This de-
tector is considered to be fixed at the origin of another ref-
erence frame S’, and the origins coincide at the instant of
observation (¢ = 0 = ¢). Thus the standard Lorentz trans-
formation applies. During dt the moving detector sees a
different number of photons than that given by Eq. (1)
because it sweeps across other photons. The numerical
density of photons in the vicinity of the origin is n(k)dk/cr2.
During time interval dt the detector sweeps out volume dV
= —s-vdt, where the volume is positive if the entrance
window faces forward. The number of photons encountered
by the moving detector during dt is

dN, = n(K)dkdt i- s/r> —s- vdin(k)dk/cr?
= n(k)dkdi(i — B) - s/r2. (5)

This expression can also be interpreted as the arrival at s
of photons moving at the net velocity ci — v = c(i — ) as
calculated in frame S.

Before we calculate the energy this represents, we must
transform some of the quantities to frame S”. First there is
the time dilatation observed for a clock attached to the
detector

dt = (1 — B2)~12dr' = ydr'. (6)

Second there is the Lorentz-Fitzgerald contraction of the
structure of the detector. Using 1 and | to designate
component vectors respectively perpendicular and parallel
tov, we have

si=sj, s1=s./7. ©)

Fig. 1. Light from a dis-
’ tant source propagates in
direction i and strikes a
’ detector at the origin. The
/ detector may be at rest
relative to the source, in
/ which case we describe it
by directed aperture o.
Alternatively, the detec-
tor may be moving past
the origin at velocity v, in
which case we describe it
in this reference frame by
aperture s.
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Third, there is the Lorentz transformation of the propa-
gation four vector which leads to Doppler shift and aber-
ration. We can write it as

k'=~vy(k-8-k)=v(-B-i)k =Dk, (8)
ki =y(kj—Bk) or Dij=~(i—B), )

k, =k, or Di, =i,. (10)

The inverse transformations can be written as
k=yk'+B8-K)=v(0+B-V)k =Dk, (11
kj=vy(kj+Bk), or Dlij=v(+B). (12)
The scalar product in Eq. (5) can now be transformed:

(i=B)-s=(@j—B)sy+iL-s.
= (D/y)ij s+ (Di ) - (s /v)
= (D/y){'-§'. (13)

The number of photons encountered by the moving detector
is an invariant and is written as

dN, = n(K)dk(ydt’Y(D/y)V - s'/r2. (5)
In frame S’ each photon has energy Ack’ = Dhck, so that
the energy absorbed by the detector is measured in its rest
frame as

dE’ = J; " Dhckn(k)dkdt'Di - s'fr2.  (14)

Using Eq. (3), we find the intensity in frame S’ to be
/= dE’
i’-s’dt
Finally, let us transform the distance measurement into
frame S”. Because the only connection between the source
and the detector is the light signal between them, the
physical significance of r is the spatial part of the dis-
placement between the event points of emission and de-
tection. That four-vector displacement is a null vector
parallel to the propagation four vector. Thus, it satisfies
transformation equations analogous to those of aberration
and Doppler effect. The analog of Eq. (8) gives us at
once

= D2[o(r). (15)

r' = Dr.

Upon substitution into Eq. (14) this yields

(16)

dE’ = D* J; " hekn(k)dkde'v - s (14)

This can be interpreted in two ways. In terms of intensity
= aE’__ DAIy(r"). (17)
With the identification )’ = i-s"/r'2 for the solid angle

i.sdt’
subtended by the detector as measured in frame S’, this
yields a transformation of detected angular distribution

yin _ _dE’
OO = Grar

= D*Q(i). (18)
DISCUSSION

Here a consistent derivation has led to two expressions
[Egs. (15) and (17)] which both relate intensity measure-
ments in two reference frames, but which have different
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(a) (b) {c)

Fig. 2. (a) Viewed in its rest frame S, the source emits light into #€2 along
i. (b) Viewed in frame S’, in which the source is moving at velocity —v, the
same light occupies dQ’ = D~24Q along i’ The solid angle d€’ is defined
by the detector 8’ with normal area i’-s’. (¢) Viewed in frame S, a detector
o presents the same normal area i-o = i’-s’. The solid angle d€ is the same
as in (a), but the separation is r = D=/, ‘

powers of the Doppler factor D. The first transformation
[Eq. (15)] applies when two detectors occupy different
reference frames, but measure equivalent collections of
photons at the same event point. This transformation /" =
D?[ specifically applies for plane waves and was derived in
Ref. 1 by a different method of counting photons. One
factor D is attributed to the transformation of the energy
of each photon, and the other factor D is attributed to the
transformation of the spacing of photons along their di-
rection of propagation. This transformation can also be
found by other methods described further in Ref. 1. All of
these methods have in common that they depend only upon
the transformation properties of propagating radiation, and
do not depend upon the nature or motion of the source.
Thus, this transformation can be considered as the most
fundamental one. It continues to apply for divergent light,
as here and in Ref. 1. The only effect of divergence is to add
into Eq. (5) terms of higher order in the small quantities dt
ands,

In the second transformation [Eq. (17)] the source is
considered to be moving. The additional factor D? found
here from the transformation of apparent distance can also
be associated with solid angle as follows. For any beam of
photons, the area they occupy normal to their direction of
propagation is invariant, as shown by Weisskopf3 and in
Ref. 1. This means that i-g in Eq. (2) and i’-s’ in Eq. (14)
can be taken equal. From Eq. (16) and that equality we
have

dQ =V.s'/r2=i-0/(Dr)>=D"2dQ  (19)

This can also be found by differentiating the component
form of Eq. (9) for aberration®3:

cost’ = (cosf — B)/(1 — Bcosh); (9)
dV _d(cost)d¢’ 1 -—p3?
dQ  d(cost)de (1 — Bcosh)?

The significance of this transformation of solid angle can
be found by working backward through the intensity
transformations. The source in frame S is moving at velocity
—v relative to frame S”. The light which it emits into solid
angle d{) at direction i in its rest frame [Fig. 2(a)] appears
in solid angle d$}’ = D=2dQ in frame S’ [Fig. 2(b)]. The
transformation of detected angular distribution [Eq. (18)]
thus includes four factors of D attributed as follows?: one
factor from the energy of each photon, one factor from the
spacing of photons along their direction of propagation, and

=D2

(19%)

John M. McKinley 613



two factors from the change of solid angle. The solid angle
d{Y can be defined by the detector s’ at distance r’, all
measured in S’. The intensity transformation [Eq. (17)]
compares the energy absorbed by s’ to that which would be
produced by an identical source at rest in S’ at the same
distance r’. Note that if the source is not spherically sym-
metric, then the comparison source must be rotated through
the angle between i and ¥. This is exactly the aberration-
rotation angle involved in the visual appearance of moving
objects.? It vanishes for motion along the line of sight, i.e.,
for v parallel or antiparallel to i. Any possible angular de-
pendence on i was suppressed in Eq. (17).

At the same event point where the light from the actual
source strikes s, we now consider another detector ¢ in S.
It is chosen so that it intercepts exactly the same cross-
sectional area of light in S as s’ does in S”. The solid-angle
transformation means that in frame S, in which both the
source and this detector are fixed, the intercepted light has
the same solid angle d€) we started with. This in turn re-
quires that the separation of source and detector be » = r’/D
[Fig. 2(c)]. The intensity measured by this detector has the
obvious value given by the fundamental intensity trans-
formation and Eqs. (16) and (17):

I=D72= D_Z[D410(r’)] = D210(Dr) = Jo(r).

In a private communication, B. W. Augenstein has
pointed out two references which present special cases of
Eq. (17). [Because that equation is so closely related to Eq.
(18), this effectively refutes the statement in Ref. 2 that this
transformation had never been presented.] McCrea* de-
rived Eq. (17) for the special case of a star receding along
the line of sight, in which case D = [(1 — 3)/(1 + B8)]'/2.
In a study of cosmology without general relativity,® Milne
considered an extended source (“nebula” or galaxy) and
carried the derivation to about the stage of Eq. (5) for ar-
bitrary angle between i and v. However, he specialized to
recession along the line of sight before completing the
transformation to the frame of the detector. Note that the
general expression found here is the simplest possible ex-
tension from the special case of direct recession. One need
only measure D from a study of lines in the spectrum. It is
immaterial what combination® of radial motion and as-
tronomical proper motion gives rise to D —the intensity
from the moving source is D* times the intensity from an
equivalent source at rest at that apparent distance. If the
source is a blackbody at temperature 7 in its own frame,
it will appear to have a Doppler-shifted temperature DT
when moving.! The change in intensity then follows directly
from the Stefan-Boltzmann radiation law.

The transformation of solid angle has a mixed history in
other investigations. It was actually the only factor in the
transformation of intensity which was included in one
presentation of the visual appearance of rapidly moving
objects.? It was properly included (attributed to Ref. 4) in
an explanation of the dark night sky paradox by means of
the expansion of the universe.” It was originally omitted in
the first derivation® of the expected anisotropy of the 3 K
cosmic blackbody radiation due to earth’s motion. It has
been included in subsequent derivations.>? This last as-
trophysical application is distinct from all the other appli-
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cations mentioned here in that the source is inescapably
diffuse rather than compact and the solid angle of accep-
tance is an intrinsic feature of the detector and of cavity
radiation itself.

~ The transformation of solid angle would also have a
subtle effect on the appearance of the starfield from a
moving spaceship, which was not mentioned in Ref. 1. Any
resolvable stellar disk would appear to have its subtended
solid angle multiplied by D2, or equivalently its angular
diameter multiplied by D1, (It always presents a circular
outline.!%) This is entirely consistent with the transforma-
tion of its apparent distance. A stereoscopic range finder
on the ship would also show each star at the transformed
distance r’ = Dr.!! Thus one has the amusing circumstance
that the forward stars (D > 1) would all appear to get fur-
ther away as the ship’s speed increases. The various sizes
of disks in the star plots of Ref. 1 describe only the apparent
brightness of each star, and not its resolved outline.

It is hoped that this presentation can clarify the role of
the solid-angle transformation. Because it is a necessary
consequence of aberration, there is always a change in the
solid angle associated with light when one changes reference
frame (except for the case of idealized plane waves). Its
effect upon the transformation of intensity must be included
in the study of the cosmic blackbody radiation, where the
angle is associated with convergence into the detector of
radiation from different parts of the primordial fireball. It
must also be included when a moving source is compared
to an equivalent fixed source, both at the same apparent
distance measured in the reference frame of the detector.
In this case the angle represents divergence from the com-
pact source to the detector. The change in solid angle does
not contribute to the transformation of intensity measured
at the same event point by detectors in relative motion. Note
particularly that the amount of divergence of the light, or
equivalently the curvature of its wave fronts, does not de-
termine which intensity transformation is correct. Thus, in
considering the appearance of stars from a moving space-
ship, a typical source distance is 1-1000 pc but the intensity
transformation is equivalent to that for plane waves. On the
other hand, typical receding galaxies are 10° times further
away (so that their light is actually more nearly plane), but
their light cannot be treated as plane waves in finding its
intensity transformation.
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