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A complete picture of the relativity of wave fronts, heretofore lacking, is presented in the context
of an expanding spherical light wave as recorded in two Lorentz frames in relative motion.

I. INTRODUCTION

In this article I reconsider the relativity of wave fronts
and give a detailed description, heretofore lacking, of how
wave front events in one Lorentz frame form a wave front
in a second in relative motion. I choose as a model the
snuatlon which Einstein introduced in his famous 1905
paper:' given two inertial frames of reference S and § with
parallel axes and S moving at constant veloclty v=L8c¢ with
respect to S in the direction of the positive x~ axis; at the
time t=7=0, when the origins of the two frames coincide,
a light pulse is emitted at the point of coincidence. The
sphencal wave front propagates in .S radially outward from
the ongm o at the speed of light ¢ and the events (x) = (x°

=ct, x!, x?, x> ) on this wave front satisfy
(x4 ()2 + ()= (x")2 (1)

If this equation is transformed to the § frame with the
Lorentz transformation, x*=A¥* X", one obtains

(x4 ()24 ()= (x"?, (2)

which has been intel_'grete_d as describing a spherical wave
front in S of radius X’ =ct at time ¢, centered on the origin
0. In fact, such an interpretation dates back to Einstein’s
original paper:! “The wave under consideration is therefore
no less a sphencal wave with veloc1ty of propagation ¢
when viewed in the moving frame.” More recently French?

has given a similar interpretation. Other authors®® have
used this model to derive the Lorentz transformation.

While this widely accepted view seems compelling, I nev-
ertheless contend that it obscures the complete picture of
the relativity of wave fronts, which is more subtle and less
mysterious than the Lorentz transformation from Eq. (1)
to Eq. (2) above seems to imply.
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In support of this contention I establish two principal
results: (1) when the events on the spherical wave front in
S at some arbitrary time t are labeled by a set of coordi-
nates which are comoving’ on the light cone, the Lorentz
transformation unambiguously maps them in S_onto an
ellipsoid of revolution centered on O at time t=yr=t/
y1 —p?and not a sphere centered on O; (2) there exists a
corresponding ellipsoid_of events in § that make up a
spherical wave front in S; these events occur on a sequence
of minor circles on the S wave front as it expands radially
outward. The second result provides a complete picture of
wave front relativity, including a detailed explanation of
how the spherical wave fronts in the two frames can be
centered on the respective origins, even though O and O
are in relative motion.

IL. THE ELLIPSOID OF § WAVE FRONT EVENTS
IN THE S FRAME

The conceptual difficulty with the interpretation of Eq.
(2) stems from the fact that the three spatial coordinates
x!, x2, x> are not comoving with the points on the spherical
wave front in §. Let us replace them with the two spherical
angles, 6 and ¢, and denote a wave front event in S by
(x,0,¢). The spherical coordinates are comoving in the
sense that a given point on the S wave front always has the
same values of 8 and ¢. The rectangular spatial coordinates
of an S wave front event are given by the usual equations,
2 3=xP cos 6.

(3)
The Lorentz transformation to the barred frame is

P=y(x"—Bx), (4)
l=x! #=x% 5

X'=x,

x'=x"sin@cos ¢, x*=x"sinfsing, x
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Fig. 1. The ellipsoid of events in the § frame that form a wave front in §

at an arbitrary time ¢ for =1/ \/i The events occur sequentially in time
from right to left and so do not constitute a wave front in S.

B=y(x3—Bx%). (6)

Substituting Egs. (3) into Egs. (4)-(6) glves us the S
coordinates of the set of wave front events (x°,0,4) that
occur simultaneously in § at some arbitrary time ¢ and
radius x°=e¢z.

P =x%(1—PB cos ), @))]
x'=x"sin @ cos ¢, x>=xCsin O sin ¢, (8)
2 =x"(cos 6—B). (9)

Equation (7) indicates that simultaneous wave front
events in § with different values of € occur at different
times in .S and so do not constitute a wave front in the
barred frame. Furthermore, from Eqs. (8) and (9) one can
easily show that

(F+Byx°)? ()24 (xH)?
a* + b

where a=yx° and b=x°. Thus S wave front events at tlme
t lie spatially on an ellipsoid of revolution in S with %> the
axis of symmetry, the rlght-hand focus at the orlgm of S,
and the center at (0,0, Byx ), the location of the origin of
S at the dilated time t=yt corresponding to the proper
time ¢ measured by a clock fixed at O. The ellipsoid is
shown in Fig. 1 for f=1/ \[i The events occur in time
from right to left in the figure and are_spatially situated
symmetrically about the origin of S at =yt and not the
origin of S. _

Finally, it should be noted that the S spacetime coordi-
nates given by Eqgs. (7)-(9) also satisfy Eq. (2). But now
it is clear that the latter equation, despite its suggestive
form, does not describe a spherical wave front at time ¢
because, according to Eq. (7), the wave front events in S at
time ¢ are not simultaneous in S, and there is no common
time ¢ among these events to define a radius X°=cr. In-
stead, Eq. (2) expresses the fact that the ellipsoid of events
in S are on the light cone. But they are not simultaneous on
the light cone and so do not form a wave front in S.

=1, (10)
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e

PiI%,

Fig. 2. An x', x* plane cross section of the object wave front and the
corresponding ellipsoid of image wave front events in the .S frame for 8

=1/ \ﬁ Each image event occurs as the S wave front crosses its spatial
location.

I1. FORMATION OF AN ELLIPSOID OF § WAVE
FRONT EVENTS IN §

There exists a corresponding ellipsoid of events in S that
make up a wave front in S, and I now examine in detail
how it is formed. To facilitate the discussion, I will refer to
the wave front in S at some arbitrary given time =T as
the object wave front, the corresponding one in S as the
image wave front, and the events on these respective wave
fronts as object and image events. The wave front in .5 at
any other time ¢ will be called simply the S wave front and
similarly in S. While this termmology has some logical
justification, as we shall see, it is used here only to provide
fluency in the discussion and is certainly not meant to
imply the primacy of any frame.

Now let us address the question: given a set of object
wave front events (X°=cT,0,4), what are the S wave front
events (x° 0¢) that make up the corresponding image
wave front in S and how are they related to the former?
First of all, by the relativity principle, we expect that the
corresponding image wave front should occur at the same
time, as measured in S5, as we are specif’ _Xmg in § for the
object wave front, namely at 7= 7 and ¥°=X° There are
no time dilations or length contractions here. The reason-
ing is simply that if the two inertial observers wait the same
amount of time, numerically according to their respective
clocks, from the initial event at the coincident origins, then
they should record the same thing. Second, from the result

of Sec. I1, we expect these events to be spatially distributed

on an ellipsoid in S.

From Eq. (7) with ®°=x"=X° we see for any given
value of B there is a minor circle of events on the object
wave front defined by the critical angle

-3

which occur in § at the prescribed time for the image wave
front. Only the object events on this circle are common to
both the object and image wave fronts. The object events
with 0 <, occur too early and those with 8> 6, occur too

late. The situation is illustrated for B=1/2 in Fig. 2

6.=cos™

(11)
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where a cross section in the x!, x* plane is shown.

The events that will make up the image wave front all
occur simultaneously in .S, but on a sequence of minor
circles on the S wave front as it expands radially outward.
In order to qualify, an event must satisfy two conditions:
(1) it must occur in § at ¥°=X° and (2) it must occur on
the S wave front. For example, consider a point on the
object wave front at #<8,, =0 in Fig. 2 and follow the
ray radially outward at the speed of light. The events of
this sequence all occur on the S wave front, satisfying con-
dition (2), and they occur later and later as we go out in
radius until one of them satisfies condition (1) as well.
This event is the image of the event on the object wave
front, in a reasonable usage of the word image, since in
optics one follows a ray from object point to image point.
For 8> 0, we reverse the sequence and follow the ray back
in time from object event to image event.

According to Eq. (4) with X°=X° and the last of Egs.
(3), the two conditions require that all image events situ-
ated on rays lying on the cone given by 6, 0<¢<27 must
occur at a time in .S given by

0 X 12
F B ) )
Then, substituting Eq. (12) into Egs. (3), we have for the
three rectangular spatial coordinates of the image events

1 X°sin 6 cos ¢
¥ =Y (1—Boos )’ ()

X°sin @ sin ¢

2__— 7
* “y(1—Bcos 6)’ (14)
3 X%cos 0 s
X = 1=Bexs0)’ (15)

Equations (12)—~(15) give the S frame spacetime coor-
dinates of the image events that make up the image wave
front in S. Substituting Eqs. (12)-(15) into the Lorentz
transformation, Egs. (4)-(6), we obtain

X=Xx% x'=Xsin 6 cos §,

#=X"sin fsin g, x°=X°cos b, (16)
where
- sin 6 - cosf@-p
I DN T

6 and @ being the corresponding spherical angles in S.
Thus it is clear that, although the image wave front is not
composed of object wave front events (except for those on
the critical minor circle), it is nevertheless a sphere of
radius X°=X°=cT in § at time =T centered on the ori-
gin of the barred frame. As time progresses in the respec-
tive frames, object and image wave fronts expand radially
at the speed of light.

It is straight forward to show that the spatial coordinates
of the image events in .S satisfy the equation

(*—Byx®)? (x4 (x)?
@t + b =

where again a=yX° and 5=X°. The easiest way to do this
is to first express Egs. (13)—(15) in terms of 6 and @ using

1, (18)
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Fig. 3. An x', x* plane cross section of the object wave front and the
corresponding ellipsoid of image wave front events in the .S frame for f=

\/3/2. As B increases the ellipsoid elongates with the minor axis remain-
ing constant at the radius of the object wave front.

Egs. (17) which can be inverted by letting 8— —. Equa-
tion (18) describes an ellipsoid of revolution with the fol-
lowing properties for all 8: (1) the left-hand focus is lo-
cated at the origin of §; (2) the center_is located at
(0,0,8yX°) and coincides with the origin of § at the instant
t=T of the image wave front as measured by a clock at O,
(3) the radius of the image wave front X° is equal to the
semiminor axis and also to a length contraction of the
semimajor axis. For larger values of B the ellipsoid elon-
gates with the semiminor axis remaining constant. Figure 2
shows an x!, x* plane cross section of the ellipsoid for

p=1/ \/5 while Fig. 3 shows the same thing for B

=3/2.

The second property can be interpreted in terms of time
dilation. Consider two events at the origin of .S, the first at
t=t=0 when the origins coincide, and the second at the
time of the image wave front t=7T. Due to time dilation,
the time between these two events as recorded by the
clocks in S is ¥T, and during this time interval the S origin
moves a distance vyT =ByX°. Despite first impressions, in
Figs. 2 and 3 the § origin at the time =T is inside the S
wave front because at this time its radius is yX° which is
always greater than ByX°.

That the ellipsoid of image events in S contracts to a
sphere in .S can be understood as follows. Consider the two
events at the opposite ends of the major axis. In S these
two events occur a distance 2yX° apart and at different
times. In § they occur simultaneously a distance 2X° apart.
Consider the major axis in S to be a rigid rod. Since the rod
is stationary in S, the two events occur at its opposite ends,
even though they do not occur simultaneously. Thus the
rod has a proper length Ly=2a=2yX°. In § the rod is
moving, and therefore its length L is interpreted as the
distance between the two events that occur simultaneously
at its opposite ends. The well-known length contraction
formula gives L= Ly/ y=2X° The same argument applies
to any pair of points at opposite ends of a chord of the
ellipsoid parallel to the x* axis. Thus each such chord is
contracted by the same factor of 1/y as the major axis. It
then follows that the ellipsoid of revolution contracts into
a sphere with a diameter equal to the minor axis.
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IV. CONCLUSION

It is now quite clear that the ellipsoid of revolution in
Fig. 1 has the same relationship with the .S wave front as
that of Fig. 2 with the S wave front. Indeed if one substi-
tutes the inversions of Egs. (17) into Egs. (7)-(9), one
obtains the form of Egs. (12)-(15) with B— —f. The el-
lipsoid of Fig. 1 is the spatial locus of object wave front
events in S, and the ellipsoid of Fig. 2 is the spatial locus of
image wave front events in S. They are, respectively, made
up of minor circles of § wave front events and .S wave front
events as these two spherical wave fronts expand radially at
the speed of light from their respective origins. Thus, while
the relativity principle is not violated, the relationship be-
tween the S and S wave fronts is a bit more subtle than just
a Lorentz transformation. It is only by the time delays and
advances on rays from the object wave front that one ob-
tains a set of image events in .S that are symmetrically
distributed about the origin of S. Then, upon relabeling
by a Lorentz transformation, the image events become

simultaneous wave front events in S and the ellipsoid is
contracted into a sphere centered on the origin O.
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Modern materials science requires processing and characterization techniques for microscopic
structures. Molecular probes such as Raman spectroscopy are some of the most viable tools,
particularly if they are supplemented by imaging to obtain spatially resolved compositional
information of inhomogeneous or low volume samples. In order to introduce these techniques
and materials science experiments into the advanced undergraduate laboratory, we have
constructed an inexpensive micro-Raman attachment, which consists of an off-the-shelf
microscope and the coupling optics to an existing Raman spectrometer. The modification of the
microscope, the optical coupling, and a low cost viewing system for positioning the laser
excitation on the sample are described in detail. The students study molecular spectra of new
materials such as diamond films, Fullerenes, and biological compounds with spatial resolution of

several microns.

L. INTRODUCTION

Raman scattering—or scattering of light at altered fre-
quency as first described by Raman and Krishnan'—yields
structural and dynamic information on a molecular level. >
As a probe it is nondestructive and therefore it is one of the
most important tools for characterization of new materials.
Due to recent simplification in the design of modern Ra-
man detection systems,* they are becoming an option for
the budget of an advanced undergraduate research labora-
tory. However, a search through the volumes of this jour-
nal during the last decade shows very few publications
concerned with the application of modern spectroscopic
techniques, and only a note which deals with Raman scat-
tering.” In this paper we present Raman spectroscopic ex-
periments to introduce students to light scattering tech-
niques and to state of the art applications in materials
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science. We describe a setup, which has the advantage that
the laser spot on the sample can be imaged in situ and that
microscopic regions of a material under study can be easily
probed.

In a typical Raman experiment, the excitation source is
a laser, and the scattered light is analyzed by a spectrom-
eter and a detector with sensitivity near the single photon
level. The inelastically scattered light contains information
on vibrational states of the sample, which manifests itself
by a frequency shift from the incident light. The underly-
ing physics is that vibrations (or other excitations) mod-
ulate the polarizability tensor and cause the induced dipole
moment to radiate at frequencies different from the electric
field vector of the incoming light wave. For most applica-
tions the spontaneous Raman scattering originating from
the linear response to the electric field is measured. The
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