NOTES AND DISCUSSIONS
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In a recent paper, Menon and Agrawal' derived what
they call the “relativistic temperature”

kT = {c*p*/E) (1

of an equilibrium gas of molecules of typical instantaneous
momenta (p,, p,, P;) and energy E. The brackets indicate a
canonical ensemble average. A one-dimensional model was
used to generalize in this way the classical result

where my, is the rest mass of a molecule. They remark with
respect to Eq. (2) “that no text book answers one impor-
tant question, viz. “‘What is the corresponding rest frame,
kinetic expression for T for a gas of relativistic atoms’...”.
Textbook writers can amuse themselves in trying to discov-
er whether or not their book contains Eq. (1). (Of course
the result may be given only implicitly. )

In my own case, Eq. (1) does appear explicitly in a prob-
lem and as an application of a generalized equipartition
theorem due to Tolman,? whose paper already contains Eq.
(1)—remarkably enough 73 years ago.

This useful and simple result may be stated as follows.
Let the Hamiltonian function £ depend on variables u,,
U,,..., where a u; can be a generalized coordinate or mo-
mentum. Let the integration over u, proceed from a to b
where either a = 0 or E is infinite at #, = a or both; and
where b is subject to the same conditions. Then the theorem
asserts

JE
= kT. 3
<u, 3u,> G

Of course the conditions on ¢ and & cannot both be fulfilled
for a u, that does not appear in the expression for E, and
indeed for such a variable u, the left-hand side of Eq. (3) is
zero and the theorem does not hold.

If one integrates over a momentum component ¥, = p,,
say, fromp, =a=0top, = b= oo, the conditions of the
theorem are fulfilled. With E = (p% + p? + p2)/2my, (3)
yields (2). Indeed for three dimensions

(p*/2my) = 3kT.
With

E=(p} +p, +1; + myc*) e,
for a gas of relativistically moving particles, and integrat-
ing over the same range, the theorem yields (1) in the form

(¢*p*/E) =kT

It holds for any number of dimensions, and I implicitly
drew attention to this apparently little known result some
years ago in a different context.*
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The standard extension of special relativity to acceler-
ated frames of reference is based upon the assumption that
an accelerated observer is equivalent to an instantaneously
comoving inertial observer. While this hypothesis of local-
ity is exactly valid for pointlike coincidences as in Newto-
nian mechanics, it is only approximately valid for observa-
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tions by an accelerating observer that are not limited to a
single point in space-time. The measurement of the fre-
quency of a wave associated with a particle by an accelerat-
ing observer is an example of such a nonlocal observation.?
Neglect of the limitations of the hypothesis of locality for
photons has led to results in the literature for the relativis-
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tic Doppler shift for accelerating observers being regarded
as exact, when, in fact, they are not. They should be quali-
fied by the reservation, “if the distance and time scales over
which nonlocal measurements are made are negligible.”
For example, the following equation for the relativistic
Doppler shift of the frequency of a photon measured by an
observer in an accelerating frame has been derived by
Price® and confirmed by Landsberg and Bishop* as exact:

Vi/iv=1—gh/c% (n

where v' and v are the frequencies of the photon measured
in an accelerating frame S’ and an inertial frame S, respec-
tively, g is the constant acceleration of the origin of S’ with
respect to S, and 4 is the rod distance between the source
and the detector. Due to the limitations of the hypothesis of
locality, Eq. (1) is strictly valid only for distance and time
scales satisfying the conditions gh /c*< 1 and g/cv<]1.

Assuming the equivalence of an accelerating observer
and an instantaneously comoving inertial observer, the
above authors used the standard relativistic Doppler shift
equation’

Vv 1~~v/c)1/2
L (=Y 2
v (1+v/c (2)

in deriving Eq. (1). But between the times of arrival at the
observation point in S’ of two successive crests of the wave
associated with the photon, the accelerating frame is not
moving at constant velocity v with respect to the inertial
frame as assumed in Eq. (2).

In a couple of more recent papers Hamilton® and Coch-
ran’ are each in agreement with an expression given by

Vv'/v =exp( —gr,/c), (3)

where 7, is the proper time when an accelerated observer in
§’ receives the first of two successive light flashes (or wave-
crests) generated by a stationary source in S. In his deriva-
tion of Eq. (3) Cochran used the standard time dilation
from special relativity,

A= At(1 —v¥ /)2, (4)
where A7 =7, — 7, and Az = ¢, — ¢,. Again, contrary to
the assumption in Eq. (4), the accelerated observer is not
moving at constant velocity v with respect to S during the
time interval between the two events.

In this note we consider a light wave instead of the world
line of a photon to derive an exact result for the Doppler
shift which reduces to Eqgs. (1) and (3) for gh /c*<1 and
g/cv< 1. Quantum aspects of this problem for single pho-
tons are discussed elsewhere.? Our approach is to relate the
space-time coordinates in S and 8’ of the two events men-
tioned above. We use the coordinate transformation equa-
tions for hyperbolic motion.® We thus go back to basics and
derive a relativistic Doppler shift equation specifically for
accelerated motion instead of using equations that were
previously derived for another situation.

Consider an inertial Lorentz frame S and a noninertial
frame S’ the origin O’ of which is accelerating with respect
to S at a constant rate g in a direction along their common x
axes as shown in Fig. 1. With an appropriate choice of the
origin O for S, the world line of O’ with respect to S is one
branch of the hyperbola®

x2—ct?=c/g. (&)
Define a set of primed coordinates for $’ based upon a Fer-
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Fig. 1. The §’ frame is accelerating at a constant rate g with respect to an
inertial frame S in the direction of their common x axis. A light wave is
traveling in the x direction. A receiver is fixed in §’ at x’ = x. The space-
time coordinates of two events are recorded that are the passage of wave-
crests 1 and 2 by the receiver. The 8’ frame and the wave at the second
event are shown by dashed lines. The unprimed and primed coordinates
for the two events are denoted by (¢,,x,), (4,,x,), (£1,x}), and (£},x.).
The wavelength A = ¢/v in S, plus the distance between the two events,
x, — x,, is equal to the distance traveled by the second wavecrest in the
time between the two events ¢(¢, — t,).

mi—-Walker transported tetrad at O’. The coordinate trans-
formation is given by’

t= (x_ ) sinh 2— gt’ (6)
c g c
, c2 gtl
x={(x"+-—)cosh2—, (7
g c

along with y = y’ and z = z'. The line element expressed in
the prime coordinates is °

ds* = — (1 + gx'/c*) P dt" 4+ dx* + dy’* +dz?% (8)

and coordinate time ¢’ is kept by a clock at the origin O'.
Thus coordinate time ¢ ' is equivalent to proper time 7 along
the hyperbolic world line of O’ in S.

We now use the coordinate transformation equations
(6) and (7) to derive the Doppler shift between the fre-
quency of a wave observed in S and that observed in S".
Suppose a receiver is fixed in the S’ frame at x' = x;. Refer-
ring to Fig. 1, define ¢, and ¢, as the times, as measured in S,
when two successive wavecrests are at the receiver. The
unprimed space coordinates of these two events are defined
to be x, and x,, while the common primed space coordinate
of both events is by definition x.. The corresponding
primed time coordinates are £ | and ¢ ;.

As seen from Fig. 1, the wavelength 4 = ¢/v, as mea-
sured in S, plus the distance moved by the receiver in the
time between crests, x, — x,, is equal to the distance trav-
eled by the second crest in this same time:

c/v+ (x, —x)) =c(t, — 1). &)

Transforming Eq. (9) to prime coordinates and converting
the hyperbolic functions to exponentials, we obtain

(8ty/c)
by — 1 = _fln(l__g___).
g ev(1 + gx)/c?)
It is tempting to say that z ; — ¢ | in Eq. (10) is the peri-
od of the light wave measured at x; in §’, but Eq. (10) gives

(10)

Notes and Discussions 562



the time interval between wavecrests in terms of coordinate
time kept by a clock at the origin. The period T’ that an
observer at x. measures is the proper time interval mea-
sured by a fixed clock at x/. From Eq. (8) with
ds= —c?dr? for a timelike interval and
dx' = dy' = dz' =0, the proper time interval between the
arrival of the two crests at x’ = x/ is given by

T =1,—1,=(14+gx./?)(th —t}). (1)

Eliminating #; — ¢ from Egs. (10) and (11), we have

’ (gri/¢)
=1 - _5(1 _;_%)1“(1 _i_)‘
v g c ev(1 +gxl/c?)
(12)

Equation (12) is an exact expression for the period T’
and the frequency v’ of the light wave as measured by an
observer at a fixed point x; in the accelerated frame S’ at a
given coordinate time ¢ | for the passage of the first crest.
For gx./c* <1 and g/cv<1 and noting that under these
conditions the coordinate time ¢ | is equivalent to the prop-
er time 7, Eq. (12) reduces to Eq. (3) in agreement with
Hamilton® and Cochran.”

In order to compare with Eq. (1), which does not de-
pend upon time explicitly, we note that for a given light
wave the observation time # | and the observation position
x. are not independent. From Eq. (8) with ds* =0, the
world line for a wavecrest moving in the x’ direction is
given by .

(¢/)In(1 4+ gx'/*) =t’ + const. (13)

Set the zero of coordinate time such that the first wavecrest
is at the origin x’ = 0 at coordinate time t = ¢’ = 0. Then
Eq. (13) with the integration constant set to zero gives the
world line of the first wavecrest. By definition at ' = ¢
the first wavecrest is at x’ = x/, so we have

eV =1 4 gx /. (14)
Substituting Eq. (14) into Eq. (12), we obtain an exact
expression for the Doppler shifted frequency of the given
light wave as measured by an observer at x/ in the acceler-
ated frame S':

==+ 5) (-5
=—=———1+ lnl—— . 15
vET ¢ c? cv 1

The logarithms in Eqs. (12) and (15) are due to the
acceleration of the receiver between the arrival times of the
two successive wavecrests. For a given rate of acceleration
g this effect becomes more pronounced for lower frequen-
cies because then there is more time for the receiver to
change its state of motion between crests.

For g/cv<1and gx./c* €1, Eq. (15) reduces to Eq. (1)
with x; = A, that is with the source of Refs. 3 and 4 located
at the origin O'. The distance 4 between the photon source
and the detector corresponds in the present treatment of a
wave to the first wavecrest being at the origin O’ at coordi-
nate time zero and the receiver being fixed at x’ = x’. In the
present context, however, the position of a wave source
with respect to the receiver is immaterial. There simply
exists a wave and its frequency can be measured by observ-
ers in S and §'. All observers in S will measure the same
frequency v, but observers in S’ will measure frequencies
v'(x') depending on the observer’s position x’.
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We now turn our attention briefly to the gravitational
redshift!® which is readily obtained as the difference of a
sequence of Doppler shifts observed on the same two
successive wavecrests at two different points in §’. Consid-
er the two successive wavecrests to be part of a short wave-
train. As they leave O’ and travel out the x’ axis they are
detected first by an observer at x; and later by another
observer at x} with x} >x{. According to Eq. (15) the
observers at x| and xj will record frequencies given, re-
spectively, by

\ —1 _
Vvix!) = ——g—(l +§%) [ln(l —i)]
c c cv

Then the fractional frequency shift between the frequency
measurements by observers at x; and at x; is

(i=12).
(16)

Av _Vi(x) =V

_ (g/¢*) (x5 —x7)
1+gx}/c¢

v v'(x7)
amn

Equation (17) is an exact result for the gravitational
redshift in the accelerated frame. The nonlocality factor
has canceled in taking the ratio. Because the motion is at
constant acceleration the nonlocal aspects of the frequency
measurements at x; and x; are the same. Consequently,
Eq. (17) written in the form v/ (x5 ) /v'(x; ) agrees exactly
with a corresponding result derived by Cochran'' using the
line element Eq. (8) and assuming locality.

The canceling of the nonlocality factor and the agree-
ment of Eq. (17) with Cochran’s result indicate that nonlo-
cality is not significant in the gravitational redshift for uni-
formly accelerated observers. This result raises the
question, what about nonuniformly accelerated observers,
or more importantly, what about stationary observers in a
real gravity field such as Schwarzschild that are accelerat-
ing nonuniformly with respect to local inertial frames.
While nonuniform acceleration is beyond the scope of the
present work, we note that if the nonlocality factors in Eq.
(16) depended on position in §’ they would not cancel in
taking the frequency ratio.'?

Although waves in noninertial frames have been consid-
ered previously,” to the author’s knowledge the exact re-
sults given by Egs. (12) and (15) for the relativistic
Doppler shift for uniformly accelerating observers are new.

Deviations from local behavior depend on the distance
and time scales, gx/c” and g/cv, over which nonlocal mea-
surements are made. For x of the order of laboratory di-
mensions and v of radio frequency or greater, these scales
are insignificant even for accelerations that can be pro-
duced by the latest ultracentrifuge technology. On the oth-
er hand an Fe®’ nucleus in a crystal lattice is subjected to
approximately periodic accelerations of amplitude of the
order of 10" ms~? due to lattice vibrations, giving
g/cev=10—1° for the 14.4-keV Mossbauer transition.
While the frequency of this transition has an uncertainty
Av/v of the order of 10~ '*, no acceleration-dependent
shift in the frequency has been observed.'* The lifetime of
the excited state is long compared to the period of the vibra-
tion, and the transition takes place over many cycles. Con-
sequently, effects that are linear in the velocity and the
acceleration are cancelled, and only the second-order
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Doppler shift which is proportional to temperature is ob-
served. ' What is needed is an acceleration that is compara-
ble in magnitude to that provided periodically by lattice
vibrations but sustained over a longer period of time. Such
accelerations can be realized by bombarding a target with
heavy ions in a heavy ion accelerator. But then the projec-
tile is not really part of the lattice and the recoiless transi-
tion is lost.

For the moment effects of the nonlocal nature of fre-
quency measurement seem to be beyond the access of ex-
periment. Nevertheless, from a conceptual point of view it
is important to understand the limitations of standard re-
sults such as Eqs. (1) and (3).
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EINSTEIN’S PEGASUS

There’s Einstein riding on a ray of light,

Holding a mirror up, at arm’s length in his hand,
In which he cannot see his face in flight

Because his jesting image, I now understand.

Won’t ever reach the mirror since its speed,

Too, is the speed of light. He rides, this fleeting day,
As if on Pegasus, immortal steed

Of bridled meditation, past the Milky Way,

Out to my mind’s Andromeda, where I,

Also transported, staring at a windless pool,
Watch his repaired reflection whizzing by.
Thought he can’t see himself, this self-effacing fool

Who holds all motion steady in his head,

I won’t forget his facing what he cannot see
In thought that binds the living and the dead,
And ride with him, outfacing fixed eternity.

Robert Pack, Middlebury College, 1991.
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