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The relativistic extension of one-dimensional simple harmonic motion is developed in the
Lagrangian formalism. The relativistic equations of motion are derived and solved analytically. The
motion with respect to proper time is analyzed in terms of an effective potential energy. While the
motion remains bounded and periodic, the effect of time dilation along the world line is to cause it
to become anharmonic with the period increasing with amplitude and the curvature concentrated at

the turning points.

L. INTRODUCTION

A particle undergoing constant acceleration and the simple
harmonic oscillator are two elementary topics in classical
mechanics that are thoroughly discussed in all of the stan-
dard expositions of the subject.! But while the relativistic
generalization of constant acceleration, defined with respect
to instantaneously comoving inertial frames, has received a
complete treatment in the literature’™* the relativistic exten-
sion of simple harmonic motion,”~’ by comparison, is some-
what incomplete. Synge® has given an exact expression for
the period of terms of an integral which Goldstein® has iden-
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tified as being expressible in terms of standard elliptical in-
tegrals. Skinner’ covers the topic in a problem. All three of
these authors give the relativistic correction to the period to
leading order. But they have not calculated the world line nor
analyzed the motion in any detail.

The question, “What happens to a simple harmonic oscil-
lator when the energy is such that the velocities become rela-
tivistic?,” is a natural one to ask, and in this paper we give a
complete answer. In brief, the effect of time dilation along
the world line is to cause simple harmonic motion at low
energy to become anharmonic at high energy, and hence the
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parentheses around the “an” in our title. Since the simple
harmonic oscillator is a central idea in physics, from normal
modes of vibration in molecules and solids to those in rela-
tivistic quantum fields, it is worthwhile considering a com-
plete and rigorous relativistic treatment of the basic classical
model.

II. THE RELATIVISTIC EQUATIONS OF MOTION

We consider the relativistic motion of a particle of rest
mass mg in a one-dimensional harmonic oscillator potentlal
Lkx?. We restrict our attention to one-dimensional motion in
a (1+1) dlmenswnal Minkowski space with coordinates
x"=ct and x'=x, a metric tensor p=diag(—1,+1), and a line
element for timelike intervals along the particle’s world line

given by
dr 2
— 2 R 2
cldr*=-c ( d)\) d\
dxt dx” . (dx"\? o [dx'\?
=gy an N A M ) ™
¢y
where 7 is a proper time and \ is any general evolution
parameter.

Following Synge,” we construct a relativistic Lagrangian
for our system by appending an appropriate gotentlal term to
the geometric Lagrangian for a free particle

%0

L=—mgc\—x,x ——k(xl)2 )

where the dots denote derivatives with respect to \. This
expression is not Lorentz invariant and we are using a special
frame of reference. The equations of motion are obtained
from the Euler—Lagrange equations for stationary action

d oL JL
—_— :0,

d\ ox, ox,

We first consider the equations of motion generated by
Egs. (2) and (3) for A=t, the coordinate time. In this case

#0=dx%dt=c 4

n=0,1. (3

and
= = g = (0P - ()=t )

As dL/dxy=0, the coordinate x; is cyclic, and the corre-
sponding Euler-Lagrange equation, Eq. (3) with «=0 and
A=t, indicates that

aL 1 moc? L | E 6
ax'-o c 1_(x1)2/c2 +2 (x ) ¢ ( )
is a constant of the motion, where E is the total relativistic
energy, including the potential energy. Note that o= —x" and
Egs. (4) and (5) have been substituted after partially differ-
entlatmg L with respect to x,. Thus we see that the factor
x%c in the potential energy term of the Lagranglan is re-
qulred in order that potential energy be included in the con-
servation of total relativistic energy.
Similarly, the other Euler—Lagrange equation, Eq. (3) with
u=1, yields the equation of motion,

d ( mex!

di \ 1= (02
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+kx'=0, @)

which agrees with previously published results.> Equation
(7) is also obtalnable from Newton’s equation of motion in
the form, dp/dt+kx'=0, by replacing the Newtonian mo-
mentum with its coordinate-time relativistic form.

An analytic solution of Eq. (7) is possible, although not
readily apparent. We prefer to work with the proper-time
equations of motion for which A=7. A complete analytic
solution is easily obtained, and in this formalism the relativ-
istic motion can be analyzed by means of an effective poten-
tial energy which we will define subsequently.

The proper-time equations of motion are obtained from
Egs. (2) and (3) with A=7, and now the dots denote deriva-
tives with respect to proper time. In this case, from Eq. (1)
with A=7, we have

.0 dx® dt dx° c
X = =g = T T% 5 (8)
dr dr dt  J1—(dx'/dt)%/c

and
—x xXV=- nﬂy)&"x”=c2. 9)

The coordinate x, is still cyclic, and Eq. (3) with ©=0 and
A=r indicates that

L _ o Lk o E 0
is constant, where we have used Eq. (9) to obtain the first
equality, Eq. (8) for the second, and E is the total relativistic
energy given by Eq. (6).

Substituting JL/dx, from Eq. (10) and JL/dx,=0 into Eq.
(3) with =0 and A=1, we obtain

k
mo)'c'o+zx1)&1=0. (11)
For wu=1 we have 51m11ar1y oL/d%;=mex' and
AL/ dx,=(k/c)x %= — (k/c)x'x°, and substitution into Eq.

(3), with A=, gives us
Y
m0x1+; x'x0=0. (12)

Equations (11) and (12) are the equations of motion in
terms of proper time, the former being an expression of the
conservation of total relativistic energy. They are compatible
with the kinematic constraints %-X= —c? and x-¥=0, and
can be obtained directly from the coordinate-time equations
of motion. Defining the relativistic momentum p*=mx*,
they can be expressed compactly as

k
pr=2xN(e"5,)=F*,  u=0,1, (13)

where F* is a Hooke’s-law Minkowski force, €,, are the
elements of a rank two Levi—Civita antisymmetric tensor,’
and €**=—¢,,. Using the identity, €, ,€*"=—¢,, we obtain

kxl 2
FMF“=—(—E—) %%, = (kx')?, (14)

and taking the square root of this equation, we see that the
classical Hooke’s law force survives in the proper-time for-
malism as the magnitude of the Minkowski force.
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IIL. SOLUTION OF THE PROPER-TIME EQUATIONS
OF MOTION

Expressed in terms of x=x' and t+=x%c and setting
k=mgw?, the proper-time equations of motion, Eqgs. (12) and
(10), may be written as

d*x dt

—T-Z + w? x —_— _0 (15)
and

dt +w2x2 B 16

7: T 2.2 = (16)

where y,=E/mc? is the total relativistic energy in units of
the rest energy. The constant 1y, is also the value of the ve-
locity parameter y = 1/y1—(dx/dt)?/c? at the origin, as
can be seen by evaluating Eq. (6) at x=0. Then Egs. (8) and
(16) give the velocity parameter as a function of x as

w?x?

dt
‘)’(X)EE_(X)=70 22 (17)

Furthermore, since w2=k/m0, the function ®x)—1 is the
kinetic energy T(x) at displacement x in units of the rest
energy:

moc?+T(x)+ skx?  3kx? (x)

y(x)—1= e e 1= o . (18)

Fina‘lly, substituting Eq. (17) into Eq. (15) for dt/dr, we
obtain

d’x w’x?
a7 + w x(‘yo 7)=0 19)

The solution of Eq. (19) determines the motion in terms of
proper time for a given total relativistic energy 7y,. Because
of the transcendental nature of the equation, we can only
obtain the solution in the form 7(x). Then Eq. (16) deter-
mines the world line in the form #[x, 7(x)]. But before solv-
ing these equations, it is conceptually useful to discuss quali-
tatively the effect of (x) in Eq. (19) and to obtain the
nonrelativistic limit of this equation. The ¥{(x) factor repre-
sents the effect of time dilation, dt/d r(x), along the world
line. It is instructive to consider Eq. (19) in the form,

il + w? 1+—7T(x) =0 20
7 " ¢ mgc = 20

where we have substituted Eq. (18) for y(x). The relativistic
oscillator has an angular  frequency, w(x)

= ou\/1+T(x)/m0c7 that varies with the kinetic energy
T(x), from a maximum value of wVE/mc? at the origin to
a minimum value of  at the turning points x=*+a. Thus the
effect of time dilation is to cause the relativistic oscillator to
become anharmonic, with a range of angular frequencies
along its world line. The strength of the anharmonicity in-
creases with increasing total relativistic energy, and in the
nonrelativistic limit the oscillator becomes harmonic. In this
limit T(x)/mgc?=(1/2)v?/c?<1, and Eq. (20) becomes

x|, 2.2

P+w x+0(v*/c?)=0, (21)

and the proper time becomes equivalent to the coordinate
time to this order.
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In seeking a solution of Egs. (16) and (19} it is convenient
to re-express them in nondimensional form:

de 1

., y2
d’x 1,
202 TYX—5X°=0, (23)

where X=wx/c is a nondimensional displacement and =t
and ®=wr are nondimensional coordinate and proper time
parameters, respectively.
Equation (23) is derivable from a Lagrangian given by
=X = (5 X*-5 XY, (24
where X=dX/d®. In contrast to the other Lagrangian we
have used which has direct physical significance, the La-
grangian of Eq. (24) is designed only to exploit an analogy
with classical mechanics in the solution of Eq. (23). Since
the Lagrangian does not depend explxcltly on, the proper time
parameter ® and the “kinetic energy” T=1X? is a homoge-
neous quadratlc function of the Veloc1ty X, we know that the
Hamiltonian is the “total energy” and that it is a constant of
the motion,°

H=T+V=W=const., (25)
where the “potential energy” is
V=1 nX"—3Xx*. (26)

Of course the “energy”” with which we are concerned here
is neither the usual quantity of classical mechanics nor the
phy51ca1 relat1v1st1c energy. In fact one can show that
W=(E?/m3c*—1)/2. For this reason we previously have
referred to the expression given by Eq. (26) as an effective
potential energy. Henceforth we will omit the quotation
marks and refer to W, T, and V as effective energies. At
least W is a monotonic function of E, and both are constants
of the motion, although trivially related. The mathematical
analogy with classical mechanics that we are exploiting here
is similar to the procedure that is used to determine the radial
motion in the Schwarzschild geometry in general relativity.!!
One other aspect of Eq. (26) should be noted. Unlike the
usual idea of a potential energy, the effective potential energy
depends upon the total relativistic energy through the factor
Yo=E/myc? in the quadratic term. Thus we have a different
effective potential energy curve for different motions.

In Fig. 1 we show plots of V vs X for four values of

Bo=vglc=+ 702 1/7y. The unbounded exterior regions
)¢ |>1 are dominated by the negative anharmonic quartic
term in the effective potential energy. However, we will see
that the particle never has enough effective energy to sur-
mount the potential barrier and reach the unbounded regions.
We can write the effective kinetic energy as

T_1 de dx\?
=340 73, ° @)
and since d6/d® =dt/dT=y and dX/dO=v/c

= V¥*—1/v, we have
T=Xy*-1). (28)

Furthermore, differentiating Eq. (26) once with respect to X
and.setting the result to zero, we find that the positions of the
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Fig. 1. The relativistic effective potential energy V(X) as a function of
displacement X for By=vy/c=0.2-0.8. As the total energy increases, the
effective potential energy maximum increases and moves further out. A
massive particle never has enough effective energy to surmount the effective
potential barrier and the motion is always bounded.

maximum value of the effective potential energy are given
by

Xy =%V2v,,

max

(29)
and substituting these values back into Eq. (26), we see that
V=3 Y- (30)

Then from Eqgs. (28) and (30) we see that the total effective
energy W=T,=T(X=0) is less than the maximum effective
potential energy:

W=T0=%(7(2)_1)=Vmax_ %<Vmax1 (31)

and the motion is bounded, except in the limit y,—o which
is denied to a massive particle.

At the turning points X=*+A the effective kinetic energy
is zero, so we can write T,= V(X=*A), or from Eqs. (26)
and (28),

Hvo— D=7 vA? -5 A% (32)
Then, solving the quartic equation, we obtain

Equations (33) and (29) indicate that A, > X v, 50 the
physical amplitude is

A=A_=\2(y,— 1), (34)

and the physical motion is confined to the region
—A_=X=A_.

Having established that the relativistic motion is bounded,
we now proceed with the general solution. To obtain the
proper time parameter ® as a function of the displacement X
of the particle, we solve the general effective eneigy equa-
tion,

Uya-1) =3 X2+ v X*—§ X4, (35)
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for X=dX/d®, rearrange the resulting equation, and express
it in the form

2dx

O A

(36)

where the + sign is to be chosen for dX>0 and the —sign
for dX <0, so that d® is always positive. By a change of
variable, X=A _ sin a, Eq. (36) can be expressed in the stan-
dard form of an elliptic integral of the first kind.!?> Then ©(X)
is given by

2 (¢ da 2
®= :——J‘ =—
©r=77], s a A, F(¢,c), (37)

where «=A_/A,=(7o~1)/(yo+1) and ¢=sin"'(X/
AD).
The world line #(x) or equivalently #X) can now be ob-
tained from Eq. (22):
do=(y,— 3% X?*)do. (38)

If we substitute Eq. (36) for dO® in Eq. (38), again make the
change of variable X=A _ sin «, and integrate, we obtain

¢ sin’ ada
6= 700 — (kA _) Nyt (39)
0 v1—«*sin® a
The integral in Eq. (39) can be expressed as

[F(,k)—E(¢,k)])/ &%, where
()= f: = s a da

(40)

is an elliptic integral of the second kind.'? Making this sub-
stitution and substituting Eq. (37) for ®, we find that

[ 2
0(X)=V2(yo+ 1)E(¢,x)~ 70+1F(¢,K), (41)
where X=2(y,—1) sin ¢ and k= (y,—1)/(yo+1),

giving the world line. The motion with respect to coordinate
time is not as easy to interpret qualitatively, but we now
show by calculation that the anharmonicity is present here as
well.

In Fig. 2 we show plots of the normalized displacement,
X(6)/A_ vs @ for By=vy/c=0.20, 0.90, and 0.99 for one
complete cycle. The amplitudes for these three world lines
are, respectively, 0.20, 1.61, and 3.49 to three figure accu-
racy. The three world lines show that, unlike simple har-
monic motion, the period of the anharmonic relativistic mo-
tion is not independent of the amplitude. For 8,=0.20 the
world line is very close to the sine wave form of nonrelativ-
istic simple harmonic motion. At 5,=0.90 the curvature is
becoming more concentrated at the turning points. At
Bp=0.99 the world line has become markedly anharmonic,
being nearly straight between the turning points. Only in the
vicinity of the turning points, where the magnitude of the
Hooke’s law force is maximum and the velocity is becoming
nonrelativistic, is the force effective in changing the velocity.

It is interesting to examine the motion in the ultrarelativ-
istic region where ,>1. In this case k—1 and A, —A_

— /2. Then Eq. (37) becomes
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Fig. 2. The normalized displacement X(6)/A _ as a function of the coordi-
nate time parameter @ for one complete cycle with 3,=0.20, 0.90, and 0.99.
The corresponding amplitudes are 0.20, 1.61, and 3.49 to three figure accu-
racy. The world lines become more anharmonic with increasing energy. At
B=0.99 the world line is nearly straight between the turning points, indi-
cating that only in these regions where the velocity is becoming nonrelativ-
istic is the force effective in changing the velocity. Unlike simple harmonic
motion, the period of the relativistic motion is not independent of the am-
plitude.

/2 ¢
0= —j sec a da
YoJo

1 | 1+sin ¢) 1 | (\/270+X) @)
n——m—-| = n ,
V27 \1-sin ¢ 2y QZYO—X

and Eq. (39) becomes

¢
0=1y,0— \/270J’ tan « sin a da: (43)
0

Substituting Eq. (42) for ©® in Eq. (43) and integrating by
parts, after a cancellation we obtain the simple result,

6=127, sin $=X. (44)

In the ultrarelativistic region the world line approaches that
of a photon, x=ct, and the effect of the force is negligible.
The effective kinetic energy at the origin just equals the
maximum effective potential energy, To=3 %=V max» and the

amplitude becomes very large: A = (X)y = V29> 1.In

the limiting case where y;—, the amplitude A —, and the
motion ceases to be periodic. Of course a massive particle
can never reach this limit.

IV. CONCLUSION

We have presented a relativistic generalization of the mo-
tion of a one-dimensional simple harmonic oscillator. Simple
harmonic motion is a key concept in physics, and it is of
intrinsic interest to extend the model into the relativistic do-
main. We have derived the coordinate-time and the proper-
time equations of motion in the Lagrangian formalism and
solved the latter analytically in terms of standard functions,
finally obtaining the world line #(x).

We have analyzed the proper-time relativistic motion in
terms of an effective potential energy in an analogy with
classical mechanics. There is a different effective potential
energy for different values of total relativistic energy. A mas-
sive particle never has enough effective energy to surmount
the maximum of the effective potential barrier, and the mo-
tion is bounded and periodic for all B;<1. As B, is increased
from zero toward one, the world line of the relativistic oscil-
lator changes from the sine wave of simple harmonic motion
to an anharmonic periodic wave with the curvature concen-
trated more and more at the turning points and the period
increasing with amplitude. The anharmonicity is a relativistic
effect due to time dilation along the world line.

As this problem is solvable in terms of standard functions,
it would serve as a useful and interesting extension to the
usual treatment of hyperbolic motion in a special relativity
course. Among other things, it is an excellent illustrative
example of the effectiveness of a force in altering the veloc-
ity in special relativity.
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