the string tension 7§ in the string supporting pulley no. 0.
Show that Eq. (2) becomes a,,=[(m,—m,)/
4m m,1T,;, a,; = a,, + ay;, and that the remaining equa-
tions are unchanged.

(3) Find the tensions in all of the strings. For example,
forFig. 3, T, = m,(g + a,;), where m, is given by Egs. (4)
and (6), and a,; by Eq. (2).

(4) Generate and solve other compound machines. For
example, start with Fig. 2 and replace m, by a machine
with masses m, and m,. Do the same for Fig. 3. Then
perhaps replace m, by a machine with masses m_ and m,,
for either Fig. 2 or Fig. 3. You will find that the problem
always “remains diagonal.” The solutions can be simply
written down.

(5) Generalize to more realistic pulleys. In Fig. 1 let the
frictionless pulley have nonzero mass m,, moment of iner-
tia 1, and radius R,,. (To prevent the massless string con-
necting m, and m, from slipping we may replace it by a
massless flexible chain whose links mesh with teeth on the
circumference of the pulley.) Show that Eq. (2) becomes
generalized to

Ay = [(ml —my)/(m, +m2+Io/R(2>)](g+ao,'):
@y = Ay + ay;, 2"
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while Eq. (3) for the effective mass (now called M,) is
generalized to

M, =my+ [4mm, + (m, + my)I/R})/
[m1+m2+Io/R(2)]- 39

(We designate the effective mass by M, rather than m,,
because there is now a real mass m, to be included.) (Hint:
Note that because I, is not zero we no longer have tension
T, = T,; and because m, is not zero we no longer have
T, =T, + T,.) Now go to the compound machine of Fig.
2, but let pulley no. 2 have real mass m,, moment of inertia
I, and radius R,. By analogy with Eqgs. (2') and (3') find
the generalizations of Eqs. (4) and (5), calling A, the ef-
fective mass of pulley no. 2. You can now go to any multi-
ply compound machine. For example, go to Fig. 3 and
make the corresponding generalizations of Egs. (6), (7),
and (8) when all pulleys have nonzero m,I, and R.

'The present article was inspired by solving Problem 14, Chap. 6, in Phys-
ics, by H. C. Ohanian (Norton, New York, 1985). That problem has
three masses and two pulleys, as in our Fig. 2. (Yes, I got the same answer
that they did!)
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Many relativistic formulas can be derived without explicitly using Lorentz transformations but,
instead, directly from Einstein’s postulate: “All physical laws are the same for all inertial
observers.” These formulas include time dilation, addition of velocities, the Doppler effect, and
optical aberration. From the visual picture seen by one observer, one can deduce the picture seen
at the same space-time point by any other observer, without knowing anything about the speed or
the three-dimensional shape of the observed object. In particular, the apparent visual shape of a

moving object is not contracted, but rotated.

L. INTRODUCTION

The Lorentz transformation is the standard way to de-
rive formulas for relativistic phenomena, such as time dila-
tion, addition of velocities, the Doppler effect, optical aber-
ration, etc. Although the derivation of these formulas is
straightforward, it is rather formal and not very transpar-
ent from the point of view of physics. In this article, I show
how they can be derived very simply from Einstein’s rela-
tivity principle: A/l physical laws are the same for all inertial
observers. (In particular, the speed of light is the same.)

Sections II, III, and IV of this article refer to problems in
one, two, and three space dimensions, respectively. A simi-
lar approach has been proposed by other authors'? for 1-
dimensional problems. Its extension to 2- and 3-dimension-
al problems is apparently new.
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II. ONE SPACE DIMENSION

In this section, I derive the formulas for time dilation,
the collinear Doppler effect, and the addition of collinear
velocities. Consider two inertial observers, A and B, reced-
ing from each other with relative velocity v. Two light sig-
nals are sent by A toward B at times 7, and 1, 4 A¢,. They
are reflected by B (who holds a mirror) and return to A at
times £, and ¢, + At,. The calculation is easiest in the frame
in which A is at rest (see Fig. 1). When the first signal is
reflected by B, the latter is passing in front of another iner-
tial observer A’, who is at rest with respect to A. The clock
of A’, synchronized with that of A, shows time 7,. Likewise,
when B reflects the second signal, he is in front of yet an-
other observer, A", at rest with respect to A and synchro-
nized with A, and the clock of A" then shows ¢, + At,. An
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t A All B
At,
Aty
Ato
A
7 X

Fig. 1. The double Doppler effect, as described in the frame where A, A’,
and A" are at rest, and B moves with uniform velocity with respect to
them.

elementary nonrelativistic calculation gives

At, = [¢/(c —v)]At, (nH
and

At, = [(c +v)/c]Aty, (2)
whence

At, = [(c +v)/(c —v) ]A¢,. (3)

Notice that Eq. (3) refers to events observed by A and is
independent of any synchronization convention. No rela-
tivity principle was used until now. Equation (3) is also
valid for acoustic signals, ¢ being the velocity of sound,
provided that A is at rest in the acoustic medium (i.e., the
velocity of sound with respect to A is the same in both
directions).

Now suppose that B holds not only a mirror but also a
clock, built identically to the clock of A. What is the time
interval At | observed by B? (Notice that B’s clock cannot
be synchronized with those of A, A’, and A", because it
moves with respect to them.) Obviously, we must have a
relationship of the type

Ar] = f(v) Az, (4)

where f(v) is the one-way Doppler factor relating the time
intervals measured by the receiver and the emitter, respec-
tively. This factor is some function of the relative velocity v,
to be determined. Likewise, for the reflected signals,

Ar, = f(v)At]. (3

Now comes the crux of the argument: The Doppler factors
in (4) and (5) must be the same, because they describe the
same phenomenon—namely the effect of the relative veloc-
ity v on the time intervals between a pair of light signals, as
measured by the emitter (right-hand side) and the receiver
(left-hand side). It is here that we explicitly assume that
the speed of /ight (contrary to that of sound waves, say) is
the same for all inertial observers.

It follows from (4) and (5) that Az, = [f(v)]?At, and
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Fig. 2. Observer B moves with velocity v with respect to A. Observer C
moves with velocity 4 with respect to B, and velocity w with respect to A.

therefore, from Eq. (3),

f) = [(c+v)/(c—v)]'V2 (6)
Comparing (1), (4), and (6), one obtains
At} = At (1 —v¥/H)'?, , (N

the familiar time dilation formula.

Now consider a third observer, C, moving with velocity
u with respect to B, and velocity w with respect to A (see
Fig. 2). What is the relationship between u, v, and w? Let A
send a pair of signals toward B and C. The time interval
measured by A is Az, That measured by B is

At! = [(c+v)/(c—v)]?As, (8)

These signals then continue toward C who observes them
with a time interval

At? =[(c+u)/(c—u)]'?At; (9)
or

Aty = [(c+ w)/(c —w)]'?At, (10)
Consistency implies that

c+w=c+u c+v, (11)

c—w c—uc—v
whence

u+v

1 + uv/c?

the familiar law of addition of velocities.

ITI1. TWO SPACE DIMENSIONS

This section treats, by the same direct methods, the non-
collinear Doppler effect and the optical aberration for-
mula. [ start with the latter.

To give a concrete example, consider a radar and a mis-
sile, as in Fig. 3. The problem is to find the relationship
between the angle &, measured in the frame where the radar
is at rest, and the angles 6’ and € ”, measured in the frame
where the missile is at rest. The relationship between 8 ' and
0" is readily obtained form Fig. 3(b):

v(t'+t")=ct"cos@" —ct'cos8’, (13)
ct'sin@’ =ct"sin@"”. (14)

(a)

v('l+'il)

Fig. 3. A radar sends a signal toward a missile and receives the echo. (a)
Description in the frame where the radar is at rest. (b) Description in the
frame where the missile is at rest.
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Notice that these two equations are obtained in the same
inertial frame and again there is no problem of clock syn-
chronization. Nevertheless, relativity is implicit in the as-
sumption that the velocity of light is the same in both direc-
tions.

Dividing (13) by (14), one obtains

1
2( . ! + b ”
¢ \sin 8 sin &
whence, by elementary trigonometry,
tan(8°/2) c—v
tan(6'/2) c+v
This is the well-known law of reflection from a moving
mirror.?
We now turn our attention to 8, as observed by the radar.

First consider the signal from the radar to the missile. The
angles 6 and €' must be related by an equation such as

0=F(6'v), (am

where the function F' has to be determined. Notice that the
angle in the left-hand side (1hs) of (17) is the one observed
by the emitter, and the angle in the right-hand side (rhs)
the one observed by the receiver.

Likewise, for the reflected ray, we must have

8" =F(8yv), (18)

with the same function F as in (17), because this is a de-
scription of the same phenomenon: Here again, the emitter
angle is in the lhs, and the receiver angle in the rhs. Com-
parison with (16) then gives the well-known relativistic
aberration formula*

tan(6 "/2) _ tan{& /2) =(c-—v)‘/2
tan(6/2) tan(6'/2) c+v ’

This result is the unique solution of 8 ” = F[F(8',v),v] as
can easily be seen if we replace @ ' by tan (6 '/2), etc. Notice
the similarity of (19) with Eq. (8). It implies that if a
distant star is observed by several telescopes moving with
respect to each other (or by a single telescope on the Earth,
orbiting around the Sun®) then a comparison of the differ-
ent aberration angles will enable us to infer the relative
velocities of the telescopes, but not their “absolute” veloc-
ity with respect to the star.

Equation (19) can also be derived by considering the
noncollinear Doppler effect (see Fig. 4). We have
c(t, — ty) = r(t,). Differentiation with respect to ¢, gives

):cote”—cotO’, (15)

(16)

(19)

c(l_£0_>_—_i';(ﬁ)_=r'—v=vcos€, (20)
dt, dt, r
whence

an _ ¢ (21)

dt, c—vcosf’
which is the generalization of (1). Likewise, differentiation
of c(t, —t,) = r(t,) gives
itlzc—i-vcos& (22)
dt, c
which is the generalization of (2). It follows that, in the
frame where the missile is at rest, we have

dt] ___c+ucos0’ (23)
dt}, c

Indeed, (22) and (23) must have the same form, because
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[ r

Fig. 4. The general Doppler effect: A pair of signals is sent by A (at rest)
and reflected by B, whose distance » from A is an arbitrary function of
time.

both apply to the same physical situation, namely the re-
ceiver being at rest. In both cases, the angles 8 and ' are
those between the emitter velocity and the signal velocity
[the signal is the reflected ray in Fig. 3(a) and the emitted
ray in Fig. 3(b), respectively].

The difference between (21) and (23) is due to the fact
that (21) is computed in the frame where the radar is at
rest, while (23) applies to the frame where the missile is at
rest. The one-way Doppler factor, which relates time inter-
vals as measured by the emitter and the receiver themselves,
is

dt dt _ i
=(1=-p7"P—L=(1-pH"""——, (24
dt, P g dt;

Fig. 5. The common past light cone of two observers in uniform relative
motion. The ¢ and ¢’ axes are the world lines of the observers. The zand 2/
axes are parallel to their relative velocity. The x = x’ and y = )’ axes are
perpendicular to the plane of the paper.
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Fig. 6. The apparent distance to a small sphere of known diameter D is
evaluatedas R = D /A@and R’ = D /A6, respectively, by two observers
with relative velocity ». Then H = R sin 8 = R’ sin @' appears to be the
same for both observers.

because of the relativistic time dilation. Here, B = v/c, as
usual. We thus obtain®

i _(1-B%)" _1+fBcosf’

= . (25)
dt, 1—-Bcosf (1—B%H1?
Consistency implies that »
cos@—cosB' =H(1 —cosBcos@’), (26)

which is yet another proof of the relativistic aberration for-
mula, Eq. (19). With the help of some additional trigo-
nometry, the one-way Doppler factor can also be written
4
as
dti _sing'_ df’
dt, sin@ de

(27)

IV. THREE SPACE DIMENSIONS

It has been known for a long time®™® that the Lorentz
contraction of a moving object is “invisible” because it is
compensated by different retardations of the signals origi-
nating in different part of the object. Thus, if a snapshot is
taken of a moving object, the latter does not appear con-
tracted, but rather rotated. This statement is actually valid
only in the limiting case of objects which are very small or
very distant. Those subtending a finite solid angle are con-
formally distorted. However, it may be shown that a
spherical object of any size, moving at any speed, always
appears to have a circular boundary.’

The proof of these statements for a small, distant object
is very simple. What an observer actually sees is his past
light cone (Fig. 5). The visual image, or the photographic
record, can be expressed by a pair of angles, such as a polar
angle @ measured from some arbitrary direction, and an
azimuthal angle ¢ measured around that direction. When
two observers in relative motion open the shutters of their
cameras at the same space-time point, they see the same
things: Both cameras collect photons from the same past
events (the past light cone is Lorentz invariant). The only
difference in the photographic records is due to aberration.
The polar angles 6 and 8 (which it is convenient to mea-
sure from the direction of the relative velocity v) are differ-
ent, and are related by Eq. (19). The azimuthal angles ¢
and ¢’ are obviously equal, by rotational symmetry around
v.
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Fig. 7. An object (the letter A) seen by seven observers at the same point

and the same instant. One observer is at rest with respect to the object, and

just beneath it. The six others move with velocities + 0.3¢, + 0.6¢c, and
+ 0.9¢.

The angular magnification in the polar direction is d6'/
d6. That in the azimuthal direction is sin 8’ d¢'/sin 6d¢.
These two magnifications are equal, by virtue of Eq. (27)
and of ¢’ = ¢. Therefore the visual shape of a small object is
magnified, without distortion, by the same factor. More
formally, the angular distance da of two neighboring rays,
given by

da® =d@? + sin® 8 d¢?, (28)
transforms as
ﬂ _ sin @' (29)

da sing

independently of the ratio d6 /d¢.

This has an interesting consequence. Suppose that the
true size of the object is known and that one uses the visual
angle de to determine the distance to that object, as in Fig.
6. Then if we draw through the object a line parallel to the
relative velocity v of a pair of observers, the latter will agree
about their distance H to that line.

In summary, all the observers see the same image(the
same apparent shape) but each one sees the object in a
different direction, because of the aberration. The object
thus appears to them rotated by the aberration angle
@' — 6. This is illustrated in Fig. 7, for several observers
moving with collinear relative velocities.
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