Twin paradox: A complete treatment from the point of view of each twin
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A specific round trip situation is set up, and is worked through from the point of
view of each twin. The gravitational field equations, and geodesic equations of
motion, are solved in the traveling twin’s reference frame, in order to determine
the time elapsed on the Earth during the periods of acceleration. The equality of
the results obtained by each twin is explicitly exhibited.

I. INTRODUCTION

When the twin paradox is discussed in courses or text-
books on special relativity, the treatment usually ends with
statements akin to the following: “Although there is no need
to invoke general relativity theory in explaining the twin
paradox, the student may wonder what the outcome of the
analysis would be if we knew how to deal with accelerated
reference frames. We could then use (the) space ship as our
reference frame. . .. We would find that we must have a
gravitational field in this frame to account for the acceler-
ations. . . .If, asrequired in general relativity, we then com-
pute the frequency shifts of light in this gravitational field,
we come to the same conclusion as in special relativity.”!
If the student were to pursue the situation further, and ac-
tually attempt to seek out a reference in which the general
theory is used to work the problem through, he would find
that such treatments are not readily available. We have only
been able to find one textbook on general relativity that
does have such a treatment, and that is The Theory of
Relativity by Moller.23

It is the purpose of this article to modify and expand on
Moller’s treatment. It is felt that there are three aspects of
his solution that warrant further consideration. First, Moller
never makes use of the gravitational field equations. He
solves the problem by transforming the Lorentz metric into
a form that is valid in arbitrary accelerated reference
frames. Our solution will take the field equations as its
starting point. Second, although Moller’s results are valid
for arbitrary values of the acceleration, he only shows
consistency with the special theory in the limit of infinite
accelerations. We shall show consistency for the general

case. Finally, although Moller’s metric has the virtue that

its spatial part is Euclidean, it leads to rather complicated
geodesic equations of motion. The form of the metric used
in our solution leads to equations of motion that are easily
soluble.

II. RESULTS FROM THE SPECIAL THEORY

We denote the reference frame of the earth twin by S
and that of the traveling twin by S. All unbarred quantltles
refer to S, and barred quantities to S. The round trip we
consider is the following: The ship leaves the earth with an
acceleration @ = g, which is constant in S. It maintains this
acceleration until it reaches a velocity v relative to the earth.
We denote its distance from the earth at this instant by d.
The acceleration is then cut off, and the ship travels a fur-
ther distance L with constant velocity v. An acceleration
a = —g is then instituted, and is maintained until the ship
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has reversed its direction of motion, and is traveling towards
the earth with velocity —v. It then retraces the distance L
with constant speed v, the final distance d with acceleration
a = g, and ends up at rest on the earth.

From the point of view of the earth twin in S, the outward
trip appears as schematically shown in Fig. 1. Since S is an
inertial frame, the results of specml relatmty apply. During
phase (1), the acceleration in S is

d 3/2
a=d—1;=(1*§) g, n

whence,

dv
= ®

_1 v v2\-3/2 v/g
AN R = T

The time during phase (2) is ¢, = L/v, and during phase (3)
it is the same as during phase (1). Therefore, the total
elapsed time in S is
4v/g 2L
=T 2= 4
d (1 —0¥cH)12 " v @
To compute the time elapsed in S, the earth twin uses the
standard time dilation result. During phase (1), this
gives
dv
_ 5
si-ocy O

- _1Lpeofo vt e [1+ufe
tl—gj;(l C,z) dv—zgln(l_v/c), (6)

with an identical result holding during phase (3). During
phase (2), the result is

dt = (1 —v2/c?)VV2dr =

3=t (1 =02 = (L) (1 ~v¥c)V2  (7)
Therefore, the total elapsed time in S is

T=-2—C]n 1+u/c
g l—v/c

(1 —0?/c?)'72, (8)

We shall later need the distance d expressed in terms of
v and g. Using (2), we have
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Fig. 1. Schematic representation of the outward trip from the point of view
of the earth twin in S.
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Fig. 2. Schematic representation of the outward trip from the point of view
of the traveling twin in S.

v 1> v —3/2
a’=f vdt=‘—f v(l-—-—2 dv
0 gJo c

1
= _g_((l —0Yc2)i2 - 1)- )

From the point of view of the traveling twin in S, the
situation appears as shown in Fig. 2. For a time

- _c [l+u/e
h=fin (1 _U/c), (10)

a grav1tat10nal field is turned on in the X direction. The
classical gravitational potential corresponding to this field
is ¢(X) = gx. The earth falls freely under the influence of
this gravitational field. At the instant the field is turned off,
the earth is at a distance

d=d( —v¥c)V2 = (c¥g)[1 — (1 —v¥cD)V/2], (11)

from the ship, and is moving with velocity —v. The earth
continues to move a further distance

L=LQ - v?c)1/2 (12)

at this constant speed v. The elapsed time in S during this
second phase is

tn=T/o= (L) (1 = v%fc2) 2, (13)

During phase III, a gravitational field is turned on in the
opposite sense from phase I, and under its influence the

earth comes to rest, and Subsequently reverses its direction
of miotion. The duration of this phase is f;;; = 7;, where 1
is given by (10). The return frip of the earth is identical in
all respects to the outward trip. The total elapsed time in
S is as given in (8).

To compute the time elapsed in S, the travelling twin can
only use the results of special relativity during phase II.
During phases I and III, he must make use of the general
theory.

The time dilation result gives for the duration of phase
ITin S,

=ty (1 = 0¥c)V2 = (L) (1 —p¥ec?). (14)
The total elapsed time in S is
T= Zti + 2ty + (ZL/U)(I - 02/6‘2) (15)

A comparison with (4) shows that the general theory must
predict

2v/g Lo
(1 — v/c2)12
In Sec. I1I we shall obtain this result.

t]+t[1[= (16)

III. RESULTS FROM THE GENERAL THEORY

We use the notation and sign conventions of Adler,
Bazin, and Schiffer.# The gravitational field in S occurs as
a result of an acceleration of the ship in the X direction.
Accordingly, we seek a metric in S of the form

ds? = e*®c2dt? — eBDdx2 — dy? — dz2,  (17)
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where «(X) and 8(X) are unknown functions of X. The
Chiristoffel symbols corresponding to the metric in (17)
are

0] _1 X
[W] = 3 (Bu0dy1 + dy08,) (%),

I:V} = %5u05,0ea(76)—5(§)a/()—c) + %‘Llaulﬂ’(f), (18)

ol 1ol -0

where §,,= 1if p = v, and 8, = 0if u # ».5 The free-space
field equations R, = 0 yield the single differential equa-
tion
a’(x) + (1/)[d(®]? - (1/)/'R)B(X) =0 (19)
Taking o/(X) > 0,6 we can solve this equation for 8(%). The
result is
B(x) = 2In[a’(X)] + a(X) + In(A42), (20)
where A is a constant. The metric now has the form
ds? = e*)c2dp2 — A2[a(X)]? e*®dx? — dy? — dz2.
(21)
The function a(x) can be chosen arbitrarily, subject only
to the condition o’(X) # 0. Choosing a different form for

the function corresponds to redefining the coordinate X.
Using

a(X) = X/A, (22)
gives

ds? = e¥/A(c2d1? — dx?) — dy2 — dz2.  (23)
zflaking use of the classical limit to determine the constant

goo(X) = ¥4~ 1+ Xx/A
~ 1+ 2¢0(X)/c? =1 + 2g%/c?, (24)

we obtain as our final form for the metric
ds? = ex26%/X(c2d12 — dx2) — dy? — d7%,  (25)

with the plus sign holding during phase I, and the minus sign
during phase II1. The corresponding Christoffel symbols
are

0
{uv} =4 % (8,00,1 + 0,00,1),

1l_ g

ol =[uf =

During phases I and 111, the earth moves along a geodesic
in S. The elapsed time in S corresponds to the elapsed
proper time along the geodesic. In order to compute this,
we must solve the equations of motion

d?x» dx* dxf _ _
3 +[a6] =0 27)

Using (26), these become
d 2t 2g dt
ds? c2 ds 0.
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d2
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d2y d2z
ds?  ds?

The last two equations have the solutions y = z = 0, since
the earth moves in the X direction. Adding the second
equation to % ¢ times the first equation gives

dx £l) i(d(f + ci))2 —0
c? )

ds? ds (29)

These are two uncoupled equations for ¥ + ct, and are easily
solved to give

X = c¥2gIn|(A + gs/c?)(B % gs/c?)| + C,
t==%c¢/2gIn |(A £ gs/c?)/(B % gs/c?)| + D. (30)

The constants A4, B, C, and D are to be determined from the
boundary corditions. '

We first require that the paramieter s be the arc length
along the geodesic. From (25), we have

2 2
] = ex2e%/c? [c2 (g) - %) ] 3n
Substitution of (30) into (31) gives
Cc=0,
|(A % gs/c?)(B + gs/c?)| = — (A £ gs/c?)(B + gs/c?)
(32)
For phase I, the boundary conditions at s = 0 are
1(0)=0, x©0)=0 % (0) = 0. (33)

These imply 4 = 1, B = —1, and D = 0. From (30) and (32)

there now follow:
X =cY2gIn[(1 + gs/c?)(1 — gs/c?)],

- 1+ gs/c2>
= ——2 ) 34
t=c¢/2gln (1 Zgs/c? (34)
Inverting the second of thése equations gives
s = c/gtanh (gt/c). (35)

This corresponds to Moller’s result (8.175).% The elapsed

proper time along the geodesic is s/c. Evaluating (35) at 7,

as given in (10), we obtdin for the elapsed time in S during
phase I,

‘ 1 = sfc = v/g. (36)

For phase III we shall use the return portion of the trip,

rather than the outbound portion. This will result in alge-

braically simpler results. We take for two of the boundary
conditions at s = 0,

Sy o dE
t(0)=0 7 0) 0 37
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To evaluate the third boundary condition, the value of %(0),
we use the fact that the spatial separatlon between the earth
and the ship at (0) = 0is L + 24, since both are in the same
instantaneous Lorentz frame. The metric with ¢ constant
reduces to

ds? = — dI2 = — e~ 2%/ %2, (38)
so that
0o _ 0 _
L+2d= dl = f e~&/dx
%(0) x(0)
= c2/g(e~EXO)/c> — 1), (39)
This gives

%(0) = — c¥gln[g(L + 2d)/c2 + 1].  (40)

The conditions (37) and (40) imply

A=g(L+2d)/c?+ 1, =—-4, D=0. (41)
From (30) and (32), there now follow:
X = = c?/2gIn[(4 — gs/c*)(4 + gs/c?)],
t=—c/2gln [(A4 — gs/c?)/(A+ gs/c?)]).  (42)
Inverting the second of these gives

s = (c?/g)A tanh(gt/c)
= (L + 2d + c?/g) tanh(gt/c). (43)

Evaluating (43) at 7;;; = ¢4, as given in (10), and using (9),
we have for the elapsed time in S during phase 111

' S v
e T 2L+ 2d + ¢¥g)

cz (1 — v2c2)12
Adding (36) and (44) gives

2v/g Ly
(1 — vYc2)2

which is identical to (10). This explicitly exhibits the con-
sistency of the two approaches.

h+tnm= (45)
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