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According to special relativity, a �longitudinally� moving stick is Lorentz contracted. When it is
brought to rest, it must expand to its proper length. But, exactly how this expansion unfolds depends
on how the stick is stopped. If the front end hits a brick wall, the rear end must �briefly� continue
moving, and the stick contracts even further before expanding; if instead the rear end is suddenly
stopped, the front end �briefly� continues, and �surprisingly� the stick overexpands before settling
into its proper length. These effects of overexpanding and overcontracting are independent of any
classical or molecular elasticity, but are derived entirely from the limits of information travel time
imposed by special relativity. I explore these phenomena, inspired by the little known “lock and
key” paradox. © 2007 American Association of Physics Teachers.
�DOI: 10.1119/1.2711827�
I. THE LOCK AND KEY PARADOX

Consider the following paradox: A U-shaped lock for a
safe is fitted by a T-shaped key in their mutual rest frame, but
the key is too short to reach all the way into the lock �see
Fig. 1�. Let’s put a button at the deepest part of the lock
�point l� and stipulate that the safe opens only when the end
of the key k touches l. When the lock and key are at rest, the
tip of the key does not reach the button and the money is
secure.

Suppose we slam the two together at a relativistic speed.
According to the key, the lock has become Lorentz con-
tracted, so the key now easily reaches the button before its
back hits the prongs of the lock. According to the lock, how-
ever, the key has become Lorentz contracted, and hence is
even further from reaching the button. In one frame of ref-
erence the button is pressed and the safe opens, whereas in
the other frame it doesn’t.

Note that this paradox is not an issue of simultaneity, like
the barn and ladder paradox.1 Here, there is an objective
event that all observers must agree on—either the button is
pressed or it isn’t.

The resolution lies in the finite speed with which informa-
tion can travel through the key. This speed is the speed of
sound in the material of the lock and key, but for the sake of
argument let’s say that sound travels at the speed of light c.
The moment the back of the key hits the prongs of the lock,
the message is sent along the key at the speed of light to
inform the tip that the back has come to a halt and the rest
needs to follow suit. In the spirit of examining the limits
imposed by special relativity, let’s assume that the key is
unbreakable and that the moment the tip of the key receives
the information that the back has stopped, it will adjust as
fast as it can to the proper length—in formal terms, this
means that the key has infinite tension. In the meantime,
after the back of the key has hit the prongs of the lock, yet
before the news has made it to the tip of the key, the tip will
continue moving toward the button.

Is it possible that the tip of the key overshoots and hits the
button before the information reaches the tip to let it know
that it must return to its proper length? If so, the key actually
hits the button in both frames of reference and the paradox is
resolved. But, if the key extends until it assumes its proper

length, and having reached it, stops, then the paradox re-
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mains. We will show in Sec. II that the key must overextend
�before the information has reached the tip� for all nonzero
velocities.

II. OVEREXTENSION AND OVERCOMPRESSION

Consider the following situation. A stick of proper length
L flies by you at a tremendous velocity v. As it passes, you
reach up and grab the back end of the stick, stopping it
instantly �see Fig. 2�a��. In time the information will reach
the front of the stick, and it will eventually assume its proper
length in your rest frame. If we assume that the information
propagates at the speed of light, the time it takes for the
information to travel from the back of the stick to its front is
given by ct= �L /��+vt, or

t =
L

�c − v��
, �1�

where �=1/�1−v2 /c2. In that time the front of the stick has
traveled a distance

vt =
vL

�c − v��
. �2�

The stick is initially Lorentz contracted and must eventu-
ally expand to its proper length. We define the coefficient of
overextension to be proportional to the difference between its
maximum length and the length it will eventually assume,

�E �
1

L
�vt +

L

�0
−

L

� f
� , �3�

where �0 is the initial value of �, � f is the final value of �,
and v is the magnitude of the change in velocity of the stick.
In this case,

�E =
1

L
�ct − L� =�1 −

v2

c2

c

c − v
− 1 = D − 1, �4�

where D is the relativistic Doppler shift factor, D
=��1+v /c� / �1−v /c�. The coefficient �E�v� is plotted in Fig.
3. Note that the stick always overextends ��E�0�, and
wildly so as it approaches the speed of light. There is no

limit on how much the stick can be overextended.
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Suppose instead that the stick is initially at rest, and we
grab the front end and give it such a ferocious pull that it
immediately accelerates to a velocity v �see Fig. 2�b��. It will
take time for the news to reach the back of the stick that the
front has taken off; ct=L, and so

Fig. 1. The lock and key paradox. A T-shaped key fits into a U-shaped lock,
but the key is too short to reach all the way into the lock. Points a and b
represent the prongs of the lock, k represents the tip of the key, and l
represents the deepest part of the lock �where the button is placed�.

Fig. 2. The four situations. �a� The stick is initially flying past with velocity
v and the hand grabs the back of the stick, stopping it immediately. �b� The
stick is initially at rest and the hand accelerates the front end of it. �c� The
stick is initially in motion and the hand stops it head on. �d� The stick is

initially at rest and the hand strikes the back end of it.
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t =
L

c
. �5�

During this time, the front of the stick will have traveled a
distance of

vt =
vL

c
. �6�

It is clear from this perspective that overextension occurs for
all velocities—it will always take some time for the informa-
tion to reach the back of the stick, and when that information
arrives, it needs to really double back on itself because by
that time the whole stick has a high velocity and must Lor-
entz contract; yet it is already longer than L! In this case the
coefficient of overextension is

�Ē =
1

L
�vL

c
+ L −

L

�
� =

v
c

−�1 −
v2

c2 + 1 =
�E

�
. �7�

Equation �7� is plotted in Fig. 4.
Suppose again that a stick flies by at high velocity, but this

time instead of grabbing the back of the stick you hold out
your hand and stop the front with your palm �see Fig. 2�c��.
The information travels through the stick at the speed of light
to inform the back of the stick that the front has stopped.
This takes a time given by ct+vt=L /�, or

t =
L

�c + v��
, �8�

during which the back of the stick travels a distance

Fig. 3. Plot of the overextension coefficient in Eq. �4�. For v= �3/5�c, �E

=1, which corresponds to a maximum length of twice the proper length. �E

approaches infinity as v approaches c, so there is no limit on the theoretical
maximum length achievable from this perspective.

Fig. 4. Plot of the overextension coefficient in Eq. �7�. �Ē reaches an upper
limit of 2 as v approaches c, which corresponds to a maximum length of
twice the proper length. �Ē=1 when v=c /�2, which corresponds to a maxi-

�
mum length of �1+1/ 2� times the proper length.
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vt =
vL

�c + v��
. �9�

This time the stick is now even shorter than L /� when it
must eventually extend to L—it is overcompressed. It is clear
from this perspective that overcompression occurs for all ve-
locities.

We define the coefficient of overcompression to be propor-
tional to the length it will eventually assume minus the mini-
mum length,

�C �
1

L
	 L

� f
− � L

�0
− vt�
 . �10�

In this case,

�C =
1

L
�L − ct� = 1 −�1 −

v2

c2

c

c + v
=

�E

D
. �11�

Equation �11� is plotted in Fig. 5.
Finally, instead of pulling the front end to accelerate the

stick, we push on the back end �see Fig. 2�d��. The time it
takes for the information to reach the front of the stick is
given by ct=L, or

t =
L

c
. �12�

In this time the back of the stick travels a distance

vt =
vL

c
, �13�

and the overcompression coefficient is

Fig. 6. Plot of the overcompression coefficient in Eq. �14�. �C̄ reaches a
maximum of �2−1 when v=c /�2, which corresponds to a minimum length

�

Fig. 5. Plot of the overcompression coefficient in Eq. �11�. �C reaches an
upper limit of 1 as v approaches c, which corresponds to a minimum length
of 0. �C=1/2 when v= �3/5�c, which corresponds to a minimum length of
half the proper length.
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�C̄ =
1

L
�L

�
− �L −

vL

c
�� =�1 −

v2

c2 +
v
c

− 1 =
�C

�
. �14�

Equation �14� is plotted in Fig. 6.

III. RESOLVING THE LOCK AND KEY PARADOX

It remains to be shown that overextension resolves the
lock and key paradox; that is, if the velocity is sufficient for
the key to hit the button in the key’s frame, then overexten-
sion will make it hit the button in the lock’s frame. One way
to show this is with a Minkowski diagram. Figure 7 shows
the initial frame of the key passing by the rest frame of the
lock. If this paradox could be resolved by issues concerning
simultaneity alone, like the barn and ladder paradox, the
story would end with Fig. 7.

Three possible lengths are included in Fig. 7 as represen-
tative of three length regimes. K1 receives the information D1
before it reaches the button B1—therefore, in a diagram that
includes the collision �Fig. 8� K1 will never reach the button.
K2 reaches the button B2 before the information gets to the
tip D2. K3 reaches the button B3 before the back end even
hits the prongs of the lock �in the key’s frame�.

Now, let’s introduce the collision into the diagram. For
simplicity, we assume that the lock is so heavy that it doesn’t
budge when the lock and key collide. This simplification
weakens the overextension effect, so if we can still manage
to resolve the paradox with this restriction, then we can re-

Fig. 7. �Color online� Lock and key paradox: Initial reference frames. The
x , t coordinates are the lock and the x� , t� coordinates are the key; x=0 is the
left end of the lock �a and b in Fig. 1�; x=L is the position of the button �l
in Fig. 1�; and x�=0 �the t� axis� is the back of the key. The lines K1, K2, and
K3 represent the front end of the key for three different lengths. A is the
point in space-time when the back of the key hits the prongs of the lock. The
speed of light has been set to 1 for clarity and two lines represent the light
cone for the point A—the signal carrying the news that the rear end of the
key has hit the lock. D1, D2, and D3 �not related to the relativistic Doppler
shift factor D� represent the points in space-time when the information
reaches the tips of the keys, K1, K2, and K3 respectively; B1 ,B2, and B3

represent the points in space-time when the front ends of the keys would
reach the button if the key kept on going at its initial speed.
solve the paradox without it.
of �1−1/ 2� times the proper length.
612Evan Pierce



Figure 8 represents the collision in the Minkowski dia-
gram. K1 never reaches the button, but both K2 and K3 do,
even though if they were at rest they would be too short. In
Fig. 8, D1 represents the point when the sound reaches K1,
and D2,3 represents the point when the sound reaches K2 and
K3, which are meanwhile waiting idly by the button that they
have pressed. In the initial paradox, when the information
travel limits are not considered, only K3 would have pressed
the button. The tacit assumption was that information is com-
municated instantly. Yet both K2 and K3 press the button
when the signal travel time is taken into account. Evidently
the overextension effects are stronger than the Lorentz con-
traction effects. Overextension resolves the lock and key
paradox.

Finally, let’s demonstrate algebraically that overextension
resolves the paradox. The smallest possible key length K that
still reaches the button by Lorentz contraction, according to
the key, is L /� �where L is the depth of the lock�. The small-
est K that reaches the button by overextension, according to
the lock, is found by

K

�
+

vK

��c − v�
= L , �15�

which simplifies to

K = L��1 −
v
c
� , �16�

which can be rewritten as

K =
1

1 +
v
c

L

�
�

L

�
. �17�

The minimum length of the key required to reach the button
due to overextension is less than the minimum length re-
quired to reach the button due to Lorentz contraction. If the
velocity is sufficient for the key to hit the button in the key’s

Fig. 8. �Color online� Effect of stopping the key. The collision is included.
At all Ds, the Ks immediately assume the speed of light and contract until
they reach their proper length. The t� axis becomes the t axis as soon as A
occurs.
frame according to Lorentz contraction, then overextension
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will make it hit the button in the lock’s frame. Overextension
resolves the lock and key paradox.

As a final note, overextension has resolved the Lorentz
contraction paradox, but perhaps it has created its own, even
more devious paradox. That is: for some velocity the key
would overextend enough to reach the button according to
the lock; but according to the key, the key would not over-
extend enough to reach the button, or vice versa. That is, the
situation can be examined from either the lock’s frame
�which we have done and refers to the situation in Fig. 2�a��
or the key’s frame �which refers to the situation in Fig. 2�b��.
Because the two frames rely on different equations, perhaps
they have different minimum values of K. This is not the
case. The smallest K that reaches the button by overexten-
sion according to the lock �by �E, Eq. �4�, shown explicitly
in Eq. �15�� is the same as the smallest K that reaches the
button according to the key �by �Ē, Eq. �7��. That is,

L��1 −
v
c
� =

L

�

1

1 +
v
c

, �18�

where the right-hand side is the smallest K that reaches the
button by overextension according to the key.

Furthermore, suppose we make the key unbudgingly
heavy and allow the lock to overcompress to hit the button.
The minimum length of the lock in this case is found to be
equal to the minimum length of the key found in Eq. �18�.
Overextension resolves the lock and key paradox and does so
without leaving new holes.

IV. DISCUSSION

What does all this say about the limits of rigidity in special
relativity? There is no such thing as a rigid object in special
relativity if rigidity is assumed to require a constant distance
between any two points on a body. The material we consid-
ered here is as rigid as is allowable by relativity. It is un-
breakable and sound travels at the speed of light. It is the
theoretical limit of rigidity; the effects we have studied have
nothing to do with the elasticity of the material. These are
effects that are required by the laws of special relativity
alone. Overextension and overcompression reveal something
not about the material, but about special relativity and space-
time.

The “elasticity” of otherwise rigid bodies in a relativistic
context has been examined before,2–4 although the literature
is incomplete. My hope is that this paradox can raise new
interest in the conceptually rich, but often neglected, nature
of rigidity and elasticity in special relativity.

I cannot shed any more light as to why the relativistic
doppler shift factor D fits so elegantly into the equations, and
whether or not it hints at deeper connections waiting to be
made. This paper has only scratched the surface of this rela-
tivistic elasticity, working only in one dimension.

A simple variant on the calculations here would be to con-
sider a slower speed of the propagation of stress along the
material. Doing so would incorporate special relativistic ve-
locity addition into the solution and would magnify the
overextension/overcompression effects found by the calcula-
tions used in this paper. It also focuses more on the material
in question, and in so doing draws away from the elasticity
due to the limits of information travel time required by spe-

cial relativity.
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