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The kind of flat-earth gravity used in introductory physics appears in an accelerated reference
system in special relativity. From this viewpoint, we work out the special relativistic description of
a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface
gravity. The analysis uses only the basic mathematical tools of special relativity typical of a
first-year university course. ©2005 American Association of Physics Teachers.

@DOI: 10.1119/1.1862632#
re
y
p
re
ar
d

:
ty.
m
e
m
fa
ec

a
e

el
o
a

n

a
at

-
st
h

n

th
le
er
th
ar
ce
o
n
o
to
a

y

sid-
his
a
-

ing

es
ere-
e

me
ac-

the
ing
ner-
-

ng
h

me

e
that

ate,

ight
ther
mo-
his
I. INTRODUCTION

Students often see special relativity as having an inhe
elegance, but see no overlap with the problems they stud
an introductory physics course. To tie the two student ex
riences closer together, this paper presents a relativistic t
ment of two of the simpler problems studied in element
mechanics courses: ballistic motion and the simple pen
lum.

These familiar examples share an important feature
both problems, the driving force is the weight of gravi
This feature opens the possibility of treating these proble
relativistically by elementary means. This possibility aris
due to the equivalence principle. All objects have the sa
acceleration in a gravitational field; a rock and a feather
at the same rate in a gravitational field. Consequently, obj
in a freely falling frame~like a falling elevator! have no
apparent weight.

In relativistic gravitation theories, like Einstein’s gener
relativity, the interpretation of the equivalence principle go
in the opposite direction. In these theories it is the fre
falling frame that is the inertial frame. In a frame that is n
freely falling, an apparent weight force arises. But it is
pseudoforce, a fictitious force like the centrifugal force, a
is an artifact of the noninertial reference frame.1,2 Thus a
downward apparent weight force is perceived on the surf
of the earth because the surface of the earth is acceler
upward at 9.81 m/s2 with respect to a freely falling frame.

Here we exploit this point of view. To study ballistic mo
tion and pendula, we do not need a complete relativi
theory of gravity; we need only to account for the weig
force ~or pseudoforce!. We work completely in gravity-free
special relativity, and we introduce weight by working in a
upward accelerating special relativistic reference frame.

This article is intended for students who have had only
beginnings of relativity. All that is required is the simp
~one-dimensional! Lorentz transform, the concept of prop
time along a worldline, the acceleration four-vector, and
fact that its components in different reference frames
related by the Lorentz transformation. For more advan
students, the results may still be of interest, and are m
easily derived with techniques like covariant differentiatio
For such students, a more compact presentation, using m
advanced techniques, is given in Appendix A. In order
give a more accessible description, some details are releg
to the endnotes.
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II. EARTHLIKE FRAME

We may take the relativistic point of view in introductor
Newtonian physics by invoking a freely fallingt,x,y,z ref-
erence frame near the surface of a flat earth, and by con
ering this reference frame to be an inertial frame. In t
inertial frame, thex,y,z spatial coordinates constitute
Cartesian spatial grid, andt is the universal time of Newton
ian physics.

We then imagine a swarm of tiny rocket ships accelerat
upward with respect to the inertial frame.~See Fig. 1!. At t
50 each of the rockets is~momentarily! at rest. We assign
labelsx̃,ỹ,z̃ to the rockets, such that att50 we havex̃5x,
ỹ5y, andz̃5z. Because the rockets move in thex direction,
they maintainỹ5y and z̃5z, but x for each rocket is a
function of time and it is this time dependence that mak
our rocket-borne reference frame an accelerated, and th
fore noninertial, frame with a weight force like that of th
earth’s surface.

We clearly want to have our rocket-borne reference fra
to be accelerating upward. In Newtonian mechanics this
celeration would be done by choosing

x5 x̃1 1
2gt2. ~1!

With this choice each rocket moves in the same way and
spatialx̃,ỹ,z̃ grid is always a Cartesian system for measur
distances. Newton’s second law can be used in this noni
tial system if every mass elementm is taken to have a gravi
tational ~pseudo!force mg acting on it in the negativex̃ di-
rection. We can do mechanics either in the freely falli
inertial frame with no gravity or in the noninertial frame wit
gravity.

In special relativity the equivalent construction has so
new subtleties. Our primary reference framet,x,y,z is now a
Minkowski coordinate system, with no gravity. As in th
Newtonian case, we again invoke the swarm of rockets
are momentarily at rest in thet,x,y,z frame att50. Again
we assign labels to the rockets such thatỹ5y and z̃5z for
all t. We must now choose how the rockets are to acceler
that is, we must specifyx(t) for each rocket.

It turns out that thex(t) in Eq. ~1! is not ideal in special
relativity. The reference frame created by thatx(t) would
have undesirable features. For example, a rocketeer m
want to measure the distance from her rocket to ano
nearby rocket. This measurement would be done in her
mentarily comoving frame. The distance measured in t
433© 2005 American Association of Physics Teachers
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way would change in time. The rocket frame, then, wou
not be an unchanging frame like the reference frame use
introductory Newtonian mechanics.

The choice ofx(t) that is close to ideal turns out to be3

x22c2t25k2, ~2!

wherek is a constant. The reason for favoring this choice
not obvious, but at least one of its features is comforting.
ct!k, Eq. ~2! becomes

x'k1
1

2

c2

k
t2. ~3!

Thus, when a rocket is moving at nonrelativistic veloc
(dx/dt'c2t/k!c), this relativistic choice ofx(t) takes the
Newtonian form in Eq.~1! if we take the acceleration to b
c2/k.

The constantk in Eq. ~2! can be different for each rocke
as in Eq.~1!, so that this constant can be used to assign ax̃
coordinate to each rocket. As we shall demonstrate, it is
to do this by choosing4

x22c2t25~ x̃1c2/g!2. ~4!

The meaning ofx̃ is potentially confusing. It is a constan
along the world line of any particular rocket. But we w
also use it as a spatial label in thex̃, ỹ, z̃ system. A
particle—like a ballistic projectile or a pendulum bob—
moving from one rocket location to another would have
time varying value ofx̃, and it is meaningful to considerx̃(t)
for such a particle.

The x̃,ỹ,z̃ system will be our earthlike system. It is to b
considered a spatial reference frame only and is not part
Minkowski system. To help avoid confusion we will not~ex-
cept in Appendix A! endow this reference frame with a
associated time coordinate. Rather, we will discuss the
namics of particles~ballistic projectiles and pendulum bob!
with the proper timet for those particles, the time measure
by clocks carried on the particles.

The real justification for Eq.~4! is that with this choice,
the rocket-bornex̃,ỹ,z̃ reference frame has three importa
properties that qualify it as an earthlike spatial referen
frame. These properties are best understood with a space
diagram like that in Fig. 2. The diagram shows worldlines
two arbitrary rockets, labeled 1 and 2. According to Eq.~4!
these worldlines are hyperbolae asymptotic tox5ct. In this
diagramP1 ~coordinatest1 ,x1) is an event on the worldline
of rocket 1, andt8,x8,y8,z8 is a Minkowski coordinate sys
tem instantaneously comoving with rocket 1 at eventP1 .
EventP2 ~coordinatest2 ,x2) is the event on the worldline o
rocket 2 that is simultaneous, in the instantaneously com

Fig. 1. The earthlikex̃,ỹ,z̃ spatial coordinate system is kept stationary w
respect to the earth by the thrust provided by the rocket engines. The in
x,y,z coordinate system is freely falling.
434 Am. J. Phys., Vol. 73, No. 5, May 2005
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ing frame, withP1 . That is, eventsP1 andP2 have the same
value of t8, and are simultaneous as seen in the refere
frame ofP1 .

The three special properties of the earthlike system
clude the following. (i ) In a frame that is instantaneous
comoving with one rocket, all rockets are instantaneously
rest.~In other words, the velocitydx/dt of rocket 2 atP2 is
the same as that of rocket 1 atP1 .) (i i ) The acceleration of
each rocket is a constant in time. (i i i ) The distance between
any two rockets, as measured in an instantaneously com
ing frame, is time independent. These properties, prove
Appendix B, establish that the rocket-bornex̃,ỹ,z̃ system is a
‘‘rigid’’ framework for spatial measurements. Although it i
not part of an inertial reference frame, it is, in a sense,
same at all times.

III. BALLISTIC TRAJECTORIES

A ballistic projectile has only the weight force acting on
This means that its worldline will be straight in a Minkows
coordinate system.5 With little loss in generality we choose
the projectile to be moving in thex,y plane, withx having
the fixed valuex5c2/g, so that the projectile starts off with
x̃50 at t50. In the freely fallingt,x,y,z frame, the projec-
tile is moving only in they direction, and we specify its
motion byy5vt[cbt. A moment of proper timedt and of
coordinate time dt are related, as usual, bydt
5A(12b2)dt[dt/g.

We chooset to be zero whent is zero, and the complete
description of the projectile motion in the freely fallin
frame becomes

t5gt, x5c2/g, y5cbgt. ~5!

With Eq. ~4!, the description in the earth-based frame imm
diately follows:

x̃52c2/g1A~c2/g!22c2g2t2, ỹ5cbgt, ~6!

and we see that the trajectory has the shape of an ellips

~ x̃1c2/g!21 ỹ2/b25~c2/g!2. ~7!

If v!c andt!c/g'1 year, then Eq.~6! reduces to

x̃'2
1

2
gt2'2

g

2v2 ỹ2, y'vt. ~8!

It is reassuring that Eq.~6! has the familiar nonrelativistic
limit, but it is more interesting in its fully relativistic form

ial

Fig. 2. In a t,x spacetime diagram, the worldlines of rockets 1 and 2
shown, along with the coordinate axes of thet8,x8 Minkowski reference
frame, the frame comoving with rocket 1 at eventP1 .
434Richard H. Price
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Figure 3 shows the elliptical trajectory for the casev
54c/5. This ellipse differs noticeably from a parabola. It
of interest that the trajectory ends at the pointx̃52c2/g,
ỹ5(4/5)c2/g, corresponding to the proper timet
5(3/5)c/g. This sudden end is not an indication of a dr
matic physical event. Rather, it signals the limit of the abil
of the x̃,ỹ,z̃ coordinates to cover the spacetime.6

IV. SIMPLE PENDULUM

The key idea in understanding the pendulum is the
quirement that the motion is determined by constrain
forces in thex̃,ỹ,z̃ frame. In the specific case of pendulu
motion, the constraint is that the pendulum bob move i
circular arc. We will, however, not immediately confine ou
selves to the case of a circular-motion pendulum, but w
keep the description as general as possible for as lon
possible. Initially we will suppose only that the motion ca
be described by two functionsx̃(t),ỹ(t).7 The constraint on
the motion~for example, that the particle move in an arc
radiusL) can be thought of as a curve in thex̃2 ỹ plane.

We are faced now with the task of combining a descript
of a constrained path in the earthlikex̃,ỹ,z̃ frame, with an
understanding of gravity~there is no gravity! in an inertial
frame. To do this, we consider a single moment for the p
dulum bob, and invoke thet8,x8,y8,z8 Minkowski system
that is instantaneously comoving with the earthlike fram8

Because the earthlike frame and the instantaneously com
ing frame are momentarily at rest with respect to each ot
the spatial directions at that moment are the same in the
frames. Then in the instantaneously comoving frame, we
describe both the constraining path and the~nonexistent! na-
ture of gravity.

We now let

Ut8[
dt8

dt
, Ux8[

dx8

dt
, Uy8[

dy8

dt
~9!

be the primed-frame components of the four-velocity of
particle, so that the components of the acceleration fo
vector are

at8[
dUt8

dt
5

d2t8

dt2 , ax8[
dUx8

dt
5

d2x8

dt2 ,

ay8[
dUy8

dt
5

d2y8

dt2 . ~10!

Fig. 3. Ballistic trajectory forv54c/5, starting att50 and ending att

5(
3
5)(c/g).
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The requirement that there is no acceleration in the direc
of motion means that

ax8Ux81ay8Uy850. ~11!

For any motion,9 the four-acceleration and the four-veloci
satisfy

c2at8Ut82ax8Ux82ay8Uy850. ~12!

Equations~11! and~12! tell us thatat8Ut8 must be zero, and

hence thatat8 must be zero.~The Ut8 component cannot be
zero.!

We take this result as the key to the dynamics:at850 in
the inertial frame that is momentarily comoving with th
earth frame. If the momentaryx velocity of the instanta-
neously comoving (t8,x8,y8,z8) frame10 is cb with respect
to thex,y,z,t frame, then the Lorentz transformation tells
that

at85
1

A12b2
~at2bax/c!. ~13!

It is straightforward to show~and is explicitly shown in Ap-
pendix B! that the Minkowski frame comoving with the
rocket at eventt,x hasb5ct/x. The condition in Eq.~13!
for no acceleration along the motion becomes

05at2bax/c5
d2t

dt2 2
t

x

d2x

dt2 5
1

x

d

dt Fx2
d

dt S t

xD G . ~14!

From Eq.~14! we infer

x2
d

dt S t

xD5x
dt

dt
2t

dx

dt
5const[K, ~15!

and from Eq.~4! we have

x
dx

dt
2c2t

dt

dt
5~ x̃1c2/g!

dx̃

dt
. ~16!

From Eqs.~15! and ~16! and from Eq.~4!, we can solve for
dx/dt anddt/dt in terms ofdx̃/dt:

dx

dt
5

c2tK

~ x̃1c2/g!2 1
x

~ x̃1c2/g!

dx̃

dt
, ~17!

dt

dt
5

xK

~ x̃1c2/g!2 1
t

~ x̃1c2/g!

dx̃

dt
. ~18!

The differential of proper timedt along the worldline of
the pendulum bob, in terms of differentials of the inert
coordinates, is

~dt!25~dt!22c22~dx!22c22~dy!2. ~19!

We now substitutedy5dỹ and the results in Eqs.~17! and
~18! into Eq. ~19! to arrive at an expression for the motio
entirely in terms ofx̃(t) and ỹ(t):

S x̃1
c2

g DAc21S dx̃

dt D 2

1S dỹ

dt D 2

5const. ~20!

Equation~20! is a single equation for the two function
x̃(t),ỹ(t). This equation gives us the basis for describi
whatever constrained motion we wish, once we have cho
the path—the relationship betweenx̃ and ỹ imposed by the
constraint. There can certainly be different opinions ab
435Richard H. Price
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what constitutes the path of a pendulum bob in relativity,
the choice made here is the most obvious. As pictured in
4, the pendulum bob maintains a distanceL from the pivot,
as measured in thex̃,ỹ,z̃ frame. With the pivot at thex̃,ỹ
origin, the constraint is thatx̃21 ỹ25L2. This constraint can
be written as

x̃52L cosu~t!, ỹ5L sinu~t!, ~21!

whereu is the angle shown in Fig. 4.11 In terms ofu(t), Eq.
~20! takes the form

S 2L cosu1
c2

g DAc21L2S du

dt D 2

5const5cS 2L cosumax1
c2

g D , ~22!

where we have definedumax as the maximum angular excu
sion of the pendulum, the angle at whichdu/dt50.

We can now solve fordt/du and integrate to find the
length of proper time for a quarter of a periodP,

P

4
5E

0

umaxS dt

du Ddu

5
L

c E0

umaxF S 2L cosumax1c2/g

2L cosu1c2/g D 2

21G21/2

du. ~23!

The value ofP given by Eq.~23! is smaller than the standar
small angle period

P052pAL

g
. ~24!

In Fig. 5, the ratioP/P0 is plotted as a function ofLg/c2

for the caseumax55°. For extremely longL, comparable to
c2/g'1016 m, the reduction is very significant. And this re
duction cannot be ascribed simply to the slowing of pro
time for a rapidly moving object. For example, the maximu
value of v[Ldu/dt is '0.175c for umax55° and Lg/c2

Fig. 4. A pendulum making an arc of a circle in thex̃,ỹ plane.
436 Am. J. Phys., Vol. 73, No. 5, May 2005
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50.8, corresponding to a time dilation factor ofA12v2/c2

'0.985. The reduction shown in Fig. 5 is much greater th
this.

V. CONCLUSIONS

‘‘Special relativistic gravity’’ is a fictitious force arising in
a noninertial earthlike reference frame. We have shown
ballistic and pendulum motions can be analyzed in this fra
by using the principle that there is no gravity in a free
falling reference frame. This analysis makes good pedag
cal exercises, though of considerably different difficulty. T
study of ballistic motion is simple, while that of pendulu
motion brings in more physical ideas and somewhat trick
mathematics.
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APPENDIX A: CALCULATIONS WITH GEODESICS
AND COVARIANT DIFFERENTIATION

Here we exploit more advanced mathematical techniq
to simplify the calculations we discussed in the main te
For simplicity we use units in whichc51. We can describe
the relationship of the inertialx,y,z system to the earth
basedx̃,ỹ,z̃ system with the transformation

t5~ x̃11/g!sinhg t̃, ~A1a!

x5~ x̃11/g!coshg t̃, ~A1b!

y5 ỹ, ~A1c!

z5 z̃. ~A1d!

In the noninertialx̃,ỹ,z̃, t̃ coordinates, the metric takes th
form known as the Rindler geometry:12,13

ds252~11gx̃!2dt21dx̃21dỹ21dz̃2. ~A2!

A ballistic trajectory is a geodesic worldline, so fou
velocity components must satisfy the geodesic equa
DUa/dt50. From this it is easy to show thatUỹ andUt̃ are

Fig. 5. The reduction of the period as a function ofLg/c2 for umax55°.
436Richard H. Price
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constant, and we choose the constants to be denoted byu and

E, respectively. The fact thatUW •UW 521 implies that

15
~U0!2

~11gx̃!2 2~Uỹ!22~Ux̃!2

5
E2

~11gx̃!2 2u22S dx̃

dt D 2

. ~A3!

If we choose x̃ to be zero whendx̃/dt is zero, then
E2511u2. The resulting differential equation is

S dx̃

dt D 2

5~11u2!F 1

~11gx̃!2 21G . ~A4!

It is easy to check thatx̃(t) given by Eq.~6! is the solution
to this differential equation forx̃50 whent50.

For the motion of the pendulum bob, we use the fact t
in the ‘‘stationary’’ x̃,ỹ,z̃, t̃ , coordinates, the acceleration
the bob must have no component along the motion, or

ax̃Ux̃1aỹUỹ50. ~A5!

BecauseaW •UW 50, it follows thatat̃50, or, equivalently,at̃

50. By using covariant differentiation in thex̃,ỹ,z̃, t̃ coordi-
nates, we have that

at̃5
dUt̃

dt
2Ut̃U

x̃G
t̃ x̃

t̃
2Ux̃U

t̃G
t̃ t̃

x̃
50. ~A6!

It is straightforward to check that the Christoffel terms ca
cel each other, so we can conclude thatUt̃ is a constant.14

From UW •UW 521, we have then that

15
~Ut̃ !

2

~11gx̃!2 2~Uỹ!2~Ux̃!2, ~A7!

or

~11gx̃!2F11S dx̃

dt D 2

1S dỹ

dt D 2G5const, ~A8!

which is identical to Eq.~20!.

APPENDIX B: THE THREE SPECIAL PROPERTIES
OF THE EARTHLIKE SYSTEM

Brief derivations are given here of the three propert
stated in Sec. II. The derivations will make use of t
Minkowski coordinate systemt8,x8,y8,z8 in the reference
frame that is comoving with rocket 1 at the pointP1 ~coor-
dinatest1 ,x1) on the rocket’s worldline, as shown in Fig. 2
The idea is thatx̃,ỹ,z̃ are not part of a Minkowski coordinat
system, so we cannot directly apply to it simple Loren
transformations. But wecan apply the mathematics o
Minkowski systems tot8,x8,y8,z8.

For convenience we will hide some bothersome factors
c by introducing the common notation of a 0 coordinatex0

[ct, and a 0 component of four-vectors, such asU0[cUt

for the time component of the four-velocity.

1. Simultaneity of rocket speed

We first show that any rocket ‘‘sees’’ all other rockets
be at rest with respect to itself. More specifically, we w
show that at a given moment oft8, all rockets have the sam
speed with respect to thet,x,y,z Minkowski reference frame
437 Am. J. Phys., Vol. 73, No. 5, May 2005
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~and hence with respect to any Minkowski reference fram!.
We start by noticing that in Fig. 2 bothP1 andP2 lie on the
x8 axis, the set of events with the same value oft8. The
equation for that axis isdt850. From the Lorentz transfor
mation between the primed and unprimed system this co
tion gives us

cdt2bdx50, ~B1!

as the equation for the axis, wherecb is the speed of the
primed frame with respect to the unprimed frame. The va
of cb is simplydx/dt for worldline 1 at pointP1 . From Eq.
~4!, cb5dx/dt5c2t1 /x1 , where t1 ,x1 are the coordinates
of P1 . We can now combine this result with Eq.~B1! to find
that the slope of thex8 axis is

dt

dx
5

t1

x1
. ~B2!

Because the axis must go through the pointt1 ,x1 , it follows
that the equation of the axis is

t

x
5

t1

x1
. ~B3!

The x8 axis is then simply the line going through thet,x
origin and throughP1 .

Clearly we would have obtained precisely the same line
we had started with pointP2 . Thus thex8 axis would be the
same for the Minkowski coordinate system comoving w
the rocket at pointP2 . But if thex8 axis is the same, then th
reference frame comoving with rocket 1 atP1 is the same as
the reference frame comoving with rocket 2 atP2 . In other
words, the speed of rocket 1 atP1 is the same as that o
rocket 2 at the same moment of comoving time.

2. Rocket acceleration

From Eq. ~4! we have that along a rocket worldlin
dx/dt5c2t/x, and hence the Lorentz factor is

g51/A12~dx/cdt!25
x

x̃1c2/g
. ~B4!

The components of the four-velocity and four-accelerat
are

U05c
dt

dt
5cg5

cx

x̃1c2/g
, Ux5

dt

dt

dx

dt
5

c2t

x̃1c2/g
,

~B5!

and

a05g
cdx/dt

x̃1c2/g
5

c3t

~ x̃1c2/g!2 ,

ax5g
c2

x̃1c2/g
5

c2x

~ x̃1c2/g!2 . ~B6!

The quantitya[AaW •aW is an invariant that signifies the
acceleration ‘‘felt’’ by each rocket.~It is, for example, the
componentax8 of the acceleration, when evaluated in an i
stantaneously comoving Minkowski reference frame.! With
the above results we can evaluatea to be

A~ax!22~a0!25
c2

x̃1c2/g
. ~B7!
437Richard H. Price
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The scalara is then constant along the worldline of ea
rocket, but varies slightly from rocket to rocket.~For x̃ small
compared to 1016 m, the variation ina is negligible.!

3. Rigidity of the earthlike frame

The third important property of the earthlike referen
frame is its spatial rigidity, the time independence of t
separation of the rockets. More precisely, this property is
in a reference frame instantaneously comoving with rocke
the distance measured to rocket 2 will be the same a
times; it will not depend on our choice of pointP1 on the
worldline.

To prove this we start with the distance as measured in
comoving frame atP1 . This measurement is simplyx282x18
made at a single moment oft8. It can be written in the form

x282x185A~x22x1!22c2~ t22t1!2. ~B8!

Now ct15bx1 and ct25bx2 where cb is the speed with
respect to thet,x,y,z system of rocket 1 at pointP1 or of
rocket 2 atP2 . ~It was shown above that they are the sam!
It follows that the distance is

A~x22x1!22c2~ t22t1!25g21~x22x1!. ~B9!

We can next usex25g(x2̃1c2/g) and x15g(x1̃1c2/g) to
write the result as

distance5x2̃2x1̃. ~B10!

This completes the proof that the distances separating r
ets are constant in time.
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