Projectiles, pendula, and special relativity
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The kind of flat-earth gravity used in introductory physics appears in an accelerated reference
system in special relativity. From this viewpoint, we work out the special relativistic description of
a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface
gravity. The analysis uses only the basic mathematical tools of special relativity typical of a
first-year university course. @005 American Association of Physics Teachers.
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[. INTRODUCTION Il. EARTHLIKE FRAME

Students often see special relativity as having an inherent W& may take the relativistic point of view in introductory
elegance, but see no overlap with the problems they study iNéwtonian physics by invoking a freely falligx,y,z ref-
an introductory physics course. To tie the two student expe€'€nce frame near the surface of a flat earth, and by consid-
riences closer together, this paper presents a relativistic tregg/ind this reference frame to be an inertial frame. In this
ment of two of the simpler problems studied in elementarynertial frame, thex,y,z spatial coordinates constitute a
mechanics courses: ballistic motion and the simple penddcartesian spatial grid, artds the universal time of Newton-
lum. ian physics.

These familiar examples share an important feature: in e then imagine a swarm of tiny rocket ships accelerating
both problems, the driving force is the weight of gravity, UPward with respect to the inertial framSee Fig. 1 At t

This feature opens the possibility of treating these problemg 0 €ach of the rockets igmomentarily at rest. We assign
relativistically by elementary means. This possibility ariseslabelsX,y,Z to the rockets, such that &0 we havex=x,
due to the equivalence principle. All objects have the sam& =Y, andZz=z. Because the rockets move in theélirection,
acceleration in a gravitational field; a rock and a feather falthey maintainy=y andZ=z, but x for each rocket is a

at the same rate in a gravitational field. Consequently, objectinction of time and it is this time dependence that makes
in a freely falling frame(like a falling elevator have no our rocket-borne reference frame an accelerated, and there-
apparent weight. fore noninertial, frame with a weight force like that of the
In relativistic gravitation theories, like Einstein’s general €arth’s surface.
relativity, the interpretation of the equivalence principle goes e clearly want to have our rocket-borne reference frame
in the opposite direction. In these theories it is the freely!® P& accelerating upward. In Newtonian mechanics this ac-
falling frame that is the inertial frame. In a frame that is not c&/ération would be done by choosing
freely falling, an apparent weight force arises. But it is a
pseudoforce, a fictitious force like the centrifugal force, and
is an artifact of the noninertial reference fraffeThus a  With this choice each rocket moves in the same way and the
downward apparent weight force is perceived on the surfacspatialk,y,Z grid is always a Cartesian system for measuring
of the earth because the surface of the earth is acceleratinfistances. Newton’s second law can be used in this noniner-
upward at 9.81 mfswith respect to a freely falling frame.  tial system if every mass elememtis taken to have a gravi-
Here we exploit this point of view. To study ballistic mo- tational (pseudaforce mg acting on it in the negativ& di-
tion and pendula, we do not need a complete relativistigection. We can do mechanics either in the freely falling
theory of gravity; we need only to account for the weightinertial frame with no gravity or in the noninertial frame with
force (or pseudoforce We work completely in gravity-free gravity.
special relativity, and we introduce weight by working in an  In special relativity the equivalent construction has some
upward accelerating special relativistic reference frame.  new subtleties. Our primary reference fratpey,z is now a
This article is intended for students who have had only théVlinkowski coordinate system, with no gravity. As in the
beginnings of relativity. All that is required is the simple Newtonian case, we again invoke the swarm of rockets that
(one-dimensionalLorentz transform, the concept of proper are momentarily at rest in thigx,y,z frame att=0. Again
time along a worldline, the acceleration four-vector, and thewe assign labels to the rockets such fhaty andZz=z for
fact that its components in different reference frames arall t. We must now choose how the rockets are to accelerate,
related by the Lorentz transformation. For more advancedhat is, we must specify(t) for each rocket.
students, the results may still be of interest, and are more It turns out that thex(t) in Eq. (1) is not ideal in special
easily derived with techniques like covariant differentiation. relativity. The reference frame created by thdt) would
For such students, a more compact presentation, using mofawve undesirable features. For example, a rocketeer might
advanced techniques, is given in Appendix A. In order towant to measure the distance from her rocket to another
give a more accessible description, some details are relegate@arby rocket. This measurement would be done in her mo-
to the endnotes. mentarily comoving frame. The distance measured in this

X=X+ 3gt°. (1)
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Fig. 1. The earthlik&,y,Z spatial coordinate system is kept stationary with X

respect to the earth by the thrust provided by the rocket engines. The inertial f;
X,¥,z coordinate system is freely falling. Pi X

1

Fig. 2. In at,x spacetime diagram, the worldlines of rockets 1 and 2 are
. shown, along with the coordinate axes of thex’ Minkowski reference
way would change in time. The rocket frame, then, wouldfame, the frame comoving with rocket 1 at evént.

not be an unchanging frame like the reference frame used in
introductory Newtonian mechanics.
The choice ofx(t) that is close to ideal turns out tobe  ing frame, withP, . That is, event®; andP, have the same
2 value oft’, and are simultaneous as seen in the reference
frame of P.
wherex is a constant. The reason for favoring this choice is  The three special properties of the earthlike system in-
not obvious, but at least one of its features is comforting. Fog|yde the following. {) In a frame that is instantaneously

X2— c22= k2,

ct<x, Eq.(2) becomes comoving with one rocket, all rockets are instantaneously at
1 ¢2 rest.(In other words, the velocitgx/dt of rocket 2 atP, is
X~K+ 5 ?tz. (3 the same as that of rocket 1R}.) (ii) The acceleration of

each rocket is a constant in timeii() The distance between

Thus, when a rocket is moving at nonrelativistic velocity any two rockets, as measured in an instantaneously comov-
(dx/dt~c?t/k<c), this relativistic choice ok(t) takes the ing frame, is time independent. These properties, proved in
Newtonian form in Eq(1) if we take the acceleration to be Appendix B, establish that the rocket-bof§,Z system is a
c?/ k. “rigid” framework for spatial measurements. Although it is

The constanic in Eq. (2) can be different for each rocket, not part of an inertial reference frame, it is, in a sense, the
as in Eq.(1), so that this constant can be used to assigk an same at all times.
coordinate to each rocket. As we shall demonstrate, it is best
to do this by choosirty Ill. BALLISTIC TRAJECTORIES

X2 —c?t?=(X+c%g)>. (4) A ballistic projectile has only the weight force acting on it.
The meaning o is potentially confusing. It is a constant Ig(l)sl‘(;qneae'tgssthsi:a:%’?V\(/\Ii?l’:kljiltltrr; I\gglslﬁ St{;}'gg;? a\‘,v'\él'gﬁg\g’ss:'
along the world line of any particular rocket. But we will ate sy : L g y )

~ the projectile to be moving in the,y plane, withx having

also use it as a spatial label in the y, Z system. A . Y — .
particle—like a ballistic projectile or a pendulum bob— the fixed valuex=c</g, so that the projectile starts off with

moving from one rocket location to another would have aXx=0 att=0. In the freely fallingt,x,y,z frame, the projec-

time varying value ok, and it is meaningful to consida(t)  {l€ is moving only in they direction, and we specify its

for such a particle. motion byy=wvt=cpgt. A moment of proper timel r and of
The,y,Z system will be our earthlike system. It is to be coordinate time dt are related, as usual, bydr

considered a spatial reference frame only and is not part of & J(1- g% dt=dt/y.

Minkowski system. To help avoid confusion we will n@x- We chooser to be zero wher is zero, and the complete

cept in Appendix A endow this reference frame with an description of the projectile motion in the freely falling

associated time coordinate. Rather, we will discuss the dyframe becomes

namics of particlegballistic projectiles and pendulum bgbs

_ — 2 _
with the proper timer for those particles, the time measured 1~ Y7 X=¢7/0, y=cByr. )
by clocks carried on the particles. With Eq. (4), the description in the earth-based frame imme-
The real justification for Eq(4) is that with this choice, diately follows:
the rocket-born&,y,Z reference frame has three important %= —c2g+ (Gl P—cE 22, J=cByr, ©)

properties that qualify it as an earthlike spatial reference
frame. These properties are best understood with a spacetira@d we see that the trajectory has the shape of an ellipse:
diagram like that in Fig. 2. The diagram shows worldlines for

~ 2 2,921 Q2 (~2 2
two arbitrary rockets, labeled 1 and 2. According to Et). (X+c%9)"+¥7 p7=(c*9)". 7
these worldlines are hyperbolae asymptotixtoct. In this If v<c andr<c/g~1 year, then Eq(6) reduces to
diagramP; (coordinated,,X;) is an event on the worldline 1
of rocket 1, and’,x’,y’,z" is a Minkowski coordinate sys- T~ — 597-2% - %*y{ y~uT. (8

tem instantaneously comoving with rocket 1 at evént
EventP, (coordinated,,x,) is the event on the worldline of It is reassuring that Eq6) has the familiar nonrelativistic
rocket 2 that is simultaneous, in the instantaneously comowimit, but it is more interesting in its fully relativistic form.
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‘X The requirement that there is no acceleration in the direction
of motion means that

aX'uX +a’'uY =o. (11)
For any motior?, the four-acceleration and the four-velocity
satisfy

c2al'ut' —aX'u¥ —a¥'uY' =o. (12)

Equations(11) and(12) tell us thata' U'" must be zero, and

hence thag! must be zero(The U component cannot be
Fig. 3. Ballistic trajectory forv =4c/5, starting atr=0 and ending atr zero)
—(3 ' .
=(5)(c/9). We take this result as the key to the dynamis=0 in
the inertial frame that is momentarily comoving with the
earth frame. If the momentary velocity of the instanta-
Figure 3 shows the elliptical trajectory for the case Neously comovingt(,x’,y’,z') frame'’is cB with respect
=4c/5. This ellipse differs noticeably from a parabola. It is to thex,y,z,t frame, then the Lorentz transformation tells us
of interest that the trajectory ends at the pdint —c%/g,  that
V=(4/5)c?/g, corresponding to the proper timer

, 1
=(3/5)c/g. This sudden end is not an indication of a dra- a' = 2(at—,8axlc), (13)
matic physical event. Rather, it signals the limit of the ability V1-5
of theX,y,Z coordinates to cover the spacetifne. It is straightforward to showand is explicitly shown in Ap-

pendix B that the Minkowski frame comoving with the
rocket at event,x hasB=ct/x. The condition in Eq(13)
IV. SIMPLE PENDULUM for no acceleration along the motion becomes

2 2
The key idea in understanding the pendulum is the re- O:at_ﬁaX/C:ﬂ_Ed_lei Xzi E (14)
quirement that the motion is determined by constraining d7? xdr® xdr|” dr\x/[|
forces in thex,y,Z frame. In the specific case of pendulum -
motion, the constraint is that the pendulum bob move in aFrom Eq.(14) we infer
circular arc. We will, however, not immediately confine our- dt dt  dx
selves to the case of a circular-motion pendulum, but will ~ X“g7| | =X g; ~tg,; = ConsEK, (15

keep the description as general as possible for as long as
possible. Initially we will suppose only that the motion canand from Eq.(4) we have
be described by two functiong 7),¥(7).” The constraint on X dt dx
the motion(for example, that the particle move in an arc of X — — ¢t —=(X+c?/g) —. (16)
radiusL) can be thought of as a curve in tRe-y plane. dr dr dr
We are faced now with the task of combining a descriptionFrom Eqs.(15) and(16) and from Eq.(4), we can solve for
of a constrained path in the earthlikey,Z frame, with an  dx/dr anddt/d~ in terms ofdXx/dr:
understanding of gravitythere is no gravityin an inertial dx 2K « %

frame. To do this, we consider a single moment for the pen- =7 _ it
dulum bob, and invoke the',x’,y’,z’ Minkowski system dr (X+cg)° (X+c/g) dr
that is instantaneously comoving with the earthlike fréme. dt K t I
Because the earthlike frame and the instantaneously comov- X X (18)

ing frame are momentarily at rest with respect to each other, dr (X+c?/g)?  (X+c?g) dr’
the spatial directions at that moment are the same in the two
frames. Then in the instantaneously comoving frame, we cap,
describe both the constraining path and thenexistentna-
ture of gravity.

The differential of proper tim&r along the worldline of
e pendulum bob, in terms of differentials of the inertial
coordinates, is

We now let (d7)2=(dt)2—c?(dx)?>—c ?(dy)2. (19
Ut = dt’ U = ax’ Uy = dy’ g  We now substitutely=dy and the results in Eq¢17) and
T dr’ T dr? T dr ©) (18) into Eq. (19) to arrive at an expression for the motion

be the primed-frame components of the four-velocity of the(_:.m'rmy in terms oX(7) andy():

particle, so that the components of the acceleration four- c2 ax\ 2 2
vector are (7<+— \/c2+ —| +|==| =const. (20)
g dr dr
al'= ﬁz ﬂ X = du* _ ﬂ Equation(20) is a single equation for the two functions
dr dr*’ dr  d7?’ X%(7),¥(7). This equation gives us the basis for describing
v ), whatever constrained motion we wish, once we have chosen
= du _ d_y (10) the path—the relationship betwe&nandy imposed by the
dr dr? "’ constraint. There can certainly be different opinions about
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Fig. 5. The reduction of the period as a functionlLaf/c? for 6,,,=5°.

=0.8, corresponding to a time dilation factor ¢ —v?/c?
~0.985. The reduction shown in Fig. 5 is much greater than
this.

V. CONCLUSIONS

Fig. 4. A pendulum making an arc of a circle in fRg plane.
“Special relativistic gravity” is a fictitious force arising in
a noninertial earthlike reference frame. We have shown that
) ) . ballistic and pendulum motions can be analyzed in this frame

what constitutes the pqth of a pendulqm bob |n.relat|V|t.y, bgtby using the principle that there is no gravity in a freely
the choice made here is the most obvious. As pictured in Figg|jing reference frame. This analysis makes good pedagogi-
4, the pendulum bob maintains a distaricérom the pivot,  ca| exercises, though of considerably different difficulty. The

as measured in the,y,Z frame. With the pivot at th&,Y  study of ballistic motion is simple, while that of pendulum

origin, the constraint is tha?+y?=L2. This constraint can motion brings in more physical ideas and somewhat trickier

be written as mathematics.
X=—Lcosf(r), Yy=Lsinb(7), (21
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2
¢ (22) vanced presentation now relegated to Appendix A.

=const=c| —L coSOpat+ 5

where we have defined,,, as the maximum angular excur- APPENDIX A: CALCULATIONS WITH GEODESICS
sion of the pendulum, the angle at whidi/d7=0. AND COVARIANT DIFFERENTIATION

Ier\gteh %?r;)rgg\évr ;?T:\éefgror:Téiir?er}doén;egéﬁg to find the Here we exploit more advanced mathematical techniques
to simplify the calculations we discussed in the main text.
P Omax| AT For simplicity we use units in which=1. We can describe
Z:f (d_Q)da the relationship of the inertiak,y,z system to the earth-
basedx,y,Z system with the transformation

_'—fﬂm “Leostnact €10\ 1R, g = (X+1/g)sinhgt AL
“clo [\ —Lcoso+clg | 6. (23 t=(X+1/g)sinhgt, (Ala)

0

The value ofP given by Eq.(23) is smaller than the standard x=(X+1/g)coshgt, (Alb)

small angle period y=Y, (Alc)
L =

Po=2 \[5' (24) =z (Ald)

In the noninertialk,y,Z,t coordinates, the metric takes the
In Fig. 5, the ratioP/P, is plotted as a function dfg/c? form known as the Rindler geomett§®
for the casef,,,,=5°. For extremely lond-, comparable to . 2 12 2 2
c?/g~10' m, the reduction is very significant. And this re- ds’=—(1+gX)°dt* +dX*+ dy* + dZ. (A2)
duction cannot be ascribed simply to the slowing of proper A ballistic trajectory is a geodesic worldline, so four-
time for a rapidly moving object. For example, the maximumvelocity components must satisfy the geodesic equation
value of v=Ld#ld7 is ~0.175¢ for ,,=5° and Lg/c? DU“/d7=0. From this it is easy to show thb andU7 are
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constant, and we choose the constants to be denotechgl  (and hence with respect to any Minkowski reference frame

E, respectively. The fact that -U=—1 implies that We start by noticing that in Fig. 2 both; andP, lie on the
) x' axis, the set of events with the same valuetaf The
_ (Uo) — (UY)2— (U¥)2 equation for that axis islt’=0. From the Lorentz transfor-
(1+g%)? mation between the primed and unprimed system this condi-
) £2 . | dx 9 . tion gives us
—W—U “\ar (A3) cdt— Bdx=0, (B1)

as the equation for the axis, whee@ is the speed of the
primed frame with respect to the unprimed frame. The value
of cB is simplydx/dt for worldline 1 at pointP;. From Eq.

(4), cB=dx/dt=c?t;/x;, wheret,,x, are the coordinates
of P;. We can now combine this result with E@®1) to find
that the slope of tha’ axis is

If we chooseX to be zero whendX/dr is zero, then
E2=1+u?. The resulting differential equation is

(Ad)

dy)z— 1+u? !

&) "

It is easy to check that(7) given by Eq.(6) is the solution

to this differential equation fok=0 when7=0. dt t;
For the motion of the pendulum bob, we use the fact that  qx — x,

in the “stationary”X,y

(B2)

%,¥,%,1, coordinates, the acceleration of

the bob must have no component along the motion, or Because the axis must go through the pejnk, , it follows

that the equation of the axis is

a*U*+aYuY=o0. (A5) t ot
N - R (B3)
Becaused-U=0, it follows thata'=0, or, equivalentlya; X X
=0. By using covariant differentiation in they,Z,t coordi-  The x’ axis is then simply the line going through thgx
nates, we have that origin and throughP; .
du; -3 < 5 Clearly we Wou_ld haye obtained precise_ly the same line if
a}=F— U;U"F&— UzU'T5=0. (A6)  we had started with poirf?,. Thus thex’ axis would be the

same for the Minkowski coordinate system comoving with
It is straightforward to check that the Christoffel terms can-the rocket at poinP,. But if thex’ axis is the same, then the
cel each other, so we can conclude thtis a constant’  reference frame comoving with rocket 1Ry is the same as

FromU-U=—1, we have then that the reference frame comoving with rocket 2Rat. In other
(U7)? o words, the speed of rocket 1 &, is the same as that of
= W—(Uy)z(ux)2, (A7)  rocket 2 at the same moment of comoving time.
or .
2. Rocket acceleration
2 d’y 2 )
(1+g%)?[ 1+ —]| + —) =const, (A8) From Eg. (4 we have that along a rocket worldline
dr dr dx/dt=c?t/x, and hence the Lorentz factor is
which is identical to Eq(20). X
y= 1/\/1—(dx/cdt)2=~+—2/. (B4)
APPENDIX B: THE THREE SPECIAL PROPERTIES Xrcg
OF THE EARTHLIKE SYSTEM The components of the four-velocity and four-acceleration
Brief derivations are given here of the three propertiesare )
stated in Sec. Il. The derivations will make use of the Uozcﬂzc _ X ,_ dtdx co
Minkowski coordinate systemy’,x’,y’,z’ in the reference dr Y X+c¥g’ dr dt X+c?%/g’
frame that is comoving with rocket 1 at the poldj (coor- (BS)
dinatestq,x;) on the rocket’s worldline, as shown in Fig. 2. gnd
The idea is th&k,y,Z are not part of a Minkowski coordinate cdx/dt 3
system, so we cannot directly apply to it simple Lorentz A=y -
transformations. But wecan apply the mathematics of X+c’lg  (X+c?g)?’
Minkowski systems td’,x’,y’,z". 2 2y
For convenience we will hide some bothersome factors of  g*=y_— = —— (B6)
¢ by introducing the common notatiorf @ 0 coordinatex® X+clg  (X+cg)
=ct, and a 0 component of four-vectors, suchs=cU* The quantitya=./a-a is an invariant that signifies the
for the time component of the four-velocity. acceleration “felt” by each rocket(lt is, for example, the
1. Simultaneity of rocket speed componen*’ of the acceleration, when evaluated in an in-

) stantaneously comoving Minkowski reference fram#ith
We first show that any rocket “sees” all other rockets 10 the apbove results we can evaluatéo be

be at rest with respect to itself. More specifically, we will
show that at a given moment tf, all rockets have the same @7 (a%)
speed with respect to thex,y,z Minkowski reference frame

2

C
=%+clg’ (B7)
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The scalara is then constant along the worldline of each The symbolg used there and that used here are relatedgfoge

rocket, but varies slightly from rocket to rock€Eorx small = ”/(*+C/Gerd.-

d 15 h .. . ligibl 5There is more than one way of interpreting the gravitational force. I. R.
compared to m, the variation ina Is negligi e Lapidus has studied ballistic motion very differently, treating gravity as a

velocity-dependent four-force, in “Motion of a relativistic particle acted
3. Rigidity of the earthlike frame upon a constant force and a uniform gravitational field,” Am. J. PHgs.
. . . 984-988(1972.

The third important property of the earthlike reference erpe range of,t to which Eq.(4) applies is limited tdx|=ct, but there
frame is its spatial rigidity, the time independence of the are no real boundaries to the spacetime-at-ct. These are boundaries
separation of the rockets. More precisely, this property is that only of the regions that are covered kyalues in Eq(4).
in a reference frame instantaneously comoving with rocket 1/t is only for convenience that we are assuming that the motion is planar.
the distance measured to rocket 2 will be the same at all The analysis to follow is very easily extended to three-dimensional motion

. . . . B H 2
times; it will not depend on our choice of poif on the by adding ad2)”term to Eq.(19. o
8Note that the comoving frame is not instantaneously comoving with the

qutld“?e\'/ this we start with the distan m red in th pendulum bob. Rather, at the moment in question it is comoving with the
0 p.O € this we sla : € distance ‘?‘S _easu ¢ , erocket at the location of the pendulum bob. By the special properties of the
comoving frame aP;. This measurement is simpkj—x; worldlines of Eq.(4) it also is instantaneously comoving with all other

made at a single moment of. It can be written in the form  rockets.

9The orthogonality of the four-velocity and four-acceleration also is stan-

X5—X1= VXo—x1)2—c2(t,— ;)2 (B8) dard. See, for example, Ref. 2, E@.2). It follows immediately from
differentiatingc2Ut'2— UX'2— UY'2=¢2 with respect tor.

°The velocity parametes here has no direct relation to the velocity param-

Now ct;=Bx; and ct,= 8x, wherecp is the speed with

respect to the,x,y,z system of rocket 1 at poiri®; or of eter 8 used in Sec. Ill.
rocket 2 atP,. (It was shown above that they are the sgme. **The variabled is illustrated by, but not defined by, Fig. 4. The definition is
It follows that the distance is f=tan (/).
2Discussions of this metric can be found in Ref. 2, Sec. 6.2; W. Rindler,
V(Xo—%1)2—C2(t,—t1)°= 7" Y (Xp— Xq). (B9) “Kruskal space and the uniformly accelerated frame,” Am. J. Pi8/.

~ 2 ~ 2 1174-1178(1976; A. P. Lightman, W. H. Press, R. H. Price, and S. A.
We can next use&,=y(Xx+c*/g) andx;=y(X;+c/g) to Teukolsky, Problem Book in Relativity and GravitatiofPrinceton U. P.,
write the result as Princeton, 1975 Prob. 1.17; G. F. R. Ellis and R. M. William§&)at and
. o~ o Curved Spacetiméxford U. P., Oxford, 2000 pp. 169-178.

distance=X;—X;. (B10) BThe fact that the spatial part of this metric is independent of time is related
This completes the proof that the distances separating rock-o the point made in Sec. Il that the spatial distances between rockets,
ets are constant in time. measured in an instantaneously comoving frame, do not change in time.

Mt is well known that for a metric with coefficients independent of the time

LEdwin F. Taylor and John A. WheeleBpacetime Physic§reeman, San coordinate, the covariant componéitis constant along a geodesic. See,

Francisco, 1966 Sec. 2. forI exampli_, Re_f. 2I, Sec. 2'_5..2_. Thllshque_intlty can b((e:| ?onsrlldered_a m_?ﬁham—
2Charles W. Misner, Kip S. Thorne, and John A. WheelBravitation cal energy(kinetic plus graV|tat|0na~t at is conserved for the motion. The
(Freeman, San Francisco, 1973ecs. 6.2 and 6.3. metric in Eq.(A2) is independent of, but, due to the constraining forces,

3A detailed discussion of the transformation in £4).and the relation to an the motion of the pendulum bob is not geodesic. The fact tats
accelerated spatial reference frame can be found in E. A. Desloge and R. Jconserved may be interpreted to mean that, as in Newtonian physics, the
Philpott, “Uniformly accelerated reference frames in special relativity,” mechanical energy is conserved because the constraining forces do no
Am. J. Phys55, 252—-261(1987), and in E. A. Desloge, “Spatial geometry ~ work. For a generalization of constraining forces and conserved mechani-
in a uniformly accelerating reference framehid. 57, 598—-602(1989. cal energy to any stationary spacetime see R. H. Price, “Normal forces in
“The notation here is slightly different from that used by Desfbge. stationary spacetimes,” Gen. Relativ. Grad6, 2171-21732004).
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