Graphical introduction to the special theory of relativity
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An approach to special relativity employing space-time diagrams and elapsed time
intervals recorded by a pair of stationary observers is presented. The conceptual
simplicity of the approach does not preclude its use to obtain all of the usual results.
The clock paradox as well as a length paradox are discussed as an illustration of the

pedagogical technique.

INTRODUCTION

We present here a somewhat different, entirely graphi-
cal approach to Einstein’s special theory. While there exist
a number of simple approaches to the subject,! and several
excellent texts at an elementary level,2 there may be some
advantage in having available another elementary intro-
duction tailored to a specific audience. We have found, over
several years, this particular method of presentation to be
a singularly effective one for use in introductory, nonmajor
courses in both physics and astronomy. We do not claim this
method to be entirely original, but to our knowledge it has
not been published, in English,? in any detail, nor in a form
in which all of the main results of interest are obtained.

Since it is our intention to recommend this approach to
our colleagues for use before suitable audiences, we not only
outline our method, but present our discussion in the same
elementary style used during its presentation. Accordingly,
we have relegated to the footnotes discussions of certain
points, such as synchronization of clocks in the same inertial
frame, which are not central to our development, and which
can become tedious when carefully done. Furthermore, we
begin with a reassuring foreword to the audience.

In Sec. I we discuss space-time maps, or diagrams. How
to actually construct such diagrams from observations,
using radar for example, is explained in Sec. I'V. Section 11
contains arguments leading to the proper time formula. The
derivation is based upon three postulates whose uses are
noted as they occur: First, the homogeneity and isotropy of
space and the homogeneity of time; second, the observed
fact that light has a unique, finite speed of propagation

which is independent of the motion of the source of the light; -

third, the “relativity” postulate, that the laws of nature
should appear to be the same to anyone, whether at rest or
in a state of unaccelerated motion. The final part of the
derivation, being somewhat more complicated than the rest,
is postponed until Sec. VII, so that we may proceed imme-
diately to the more interesting examples. Therefore, in Sec.
Il we present an incomplete argument, based upon sim-
plicity, for the correct result.

Section I11I contains a graphical discussion of the twin
paradox. In Sec. 1V, where the construction of space-time
diagrams is discussed, the concept of relative simultaneity
of events arises naturally. Section V contains a brief deri-
vation of the Lorentz-Fitzgerald length contraction, which
is followed immediately in Sec. VI by a discussion of a
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length paradox. In the Appendix, the usual Lorentz trans-
formation formulas are obtained, for completeness.

FOREWORD

Einstein’s theory of special relativity is a very deep
theory which can lead to complicated mathematics in its
most complete applications. The introduction presented
here makes use of a very simple graphical technique to ar-
rive at the most prominent result, namely, that if a person
is in motion relative to us, then his watch keeps a different
time from ours.

In using this graphical technique, we will approach the
subject from a point of view which relies heavily on our in-
tuitive ideas of how things really should work. Hopefully
we can come away with the conviction that Einstein’s result
is the natural conclusion to draw, and that, in a strange and
not completely understood way, our older idea of one ab-
solute time for everyone is, in fact, the unnarural point of
view,

1. SPACE-TIME MAP

Our basic tool will be what is generally called a space-
time diagram,* a graph on which we draw a “world line”
for each person or thing which we wish to discuss. A world
line is really just a tracing of each person’s path in space
which also shows where he was at any particuiar time.

In Fig. 1 we have the world line for a person who is
standing still until at the time (and place) marked A he
starts walking to the right. When he arrives at the place
(and time) marked B, he again stands still. Note that time
runs upward on the diagram so that to trace out the person’s
history we follow the world line from bottom to top. A
vertical path means that the person is standing at the same
x value while some time elapses, i.e., that he is stationary.
An event must be described by telling not only where it
happened, but when, so that event A has a value of the time
coordinate ¢, as well as a value of the space coordinate x,
and the same is true of event B.

Of course we really live in a three-dimensional world, so
that a space-time diagram should have four dimensions
(three spacial and one time), but we cannot draw four-
dimensional figures on a two-dimensional sheet of paper.
We will just assume that everyone whom we want to observe
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Fig. 1. Space-time map.

will move only in one dimension—to the right or left along
the direction we have labeled x.

Our next step should be to choose a scale for our space-
time diagrams. We might, for instance, choose to measure
time in hours and distance in miles. Then the previous ex-
ample would now look like Fig. 2. Now we can tell, as well,
how far the person traveled D and how long the trip took At.
The constant speed v at which he walked is given by the
familiar result: distance = rate X time, or

D=0vX Atz (N

For the example of Fig. 2, 2 miles in 3 h for a speed of 25
miles/h.

We will also add one more element, which has to do with
the determination of the times of events. Of course the de-
termination of the distance coordinate x for events such as
A and B is easy; one simply consults milestones placed along
the path. In practice to determine the time coordinate ¢, one
has a central, accurate clock (represented in Fig. 2 by a
church bell) whose ticks are broadcast by radio signals.>
These radio signals travel at the speed of light, usually de-
noted ¢ (about 186000 miles/sec), and are indicated by the
dashed lines in Fig. 2.

Unfortunately, these dashed lines represent world lines
with a velocity which cannot be distinguished from infinite
in Fig. 2, i.e., the lines are drawn horizontal. Because light
does have a finite velocity, however, this method for de-
termining the coordinate ¢ is incorrect if one can measure
time very accurately, or if large distances (say interplane-
tary) are involved. Nevertheless, this technique works nicely
on this earth and is the reason that in observing everyday
events we intuitively feel that time is universal, i.e., may be
represented by a horizontal dashed line in Fig. 2 which
keeps “marching upward.”

In the following discussions, light signals will be crucial,
as will be the fact that they travel at a finite, not infinite,
speed so that some time is required for them to travel any
distance. This effect can be made to show up in our di-
agrams only if we change the scale rather drastically. This
is illustrated in Fig. 3.

In Fig. 3 we have new scales of time and distance chosen
so that light signals are drawn at 45°. Time is marked off
in seconds while distances are marked off in “light seconds,”
i.e., the distance light travels in one second (186 000 miles).
We have pictured two stationary people. Number 1 sends
a light signal to the right. The act of sending out this signal
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is itself an event which we have marked A. Stationary ob-
server 2 receives this signal, an event which we have marked
B. Note that this necessary scale change has reduced the
velocities of ordinary persons (a few miles per hour) to
values indistinguishable from zero, i.e., in Fig. 3 their world
lines are indistinguishable from vertical lines. A world line
with a noticeable tilt would represent a velocity which is an
appreciable fraction of the speed of light. Our intuitive
universal time picture represented by the ‘“upward
marching” dashed lines in Fig. 2 has been discarded; in Fig.
3 one would have a series of parallel lines all drawn at 45°.
By using space-time diagrams drawn to this new, more
physical scale, we can begin to discover one of the results
of special relativity.

II. PROPER TIME FORMULA

Let us try to concentrate on the meaning of time itself
as it is recorded by the watches of several people (observ-
ers).® We will consider what happens when three people
each record the time interval which elapses between two
events, as they see them occur. We label our three people
the left man L, the middle man M, and the right man R,
arranged as in Fig. 4.

L and R will be just passive, stationary observers, while
we will have M send out light signals in both directions at
two events A and B which happen to him. For this purpose,
we will equip M with a camera flash apparatus constructed
so that the light flash is sent in both directions at once, and
ask him to flash the light, count off a few seconds on his
watch, and then flash it again. In Fig. 4, M is himself also
stationary. Now since all light signals “travel” at 45°, the
two signals sent, say, to the right are drawn as parallel lines.
Then the elapsed time as measured by R, Atg, is obviously
equal to the elapsed time according to M, Aty. The same
is true of the signals sent to the left, so we have the expected
result

AtR=AtL=AtM, (2)
for the case that everyone is standing still. Note that if L and
R record the actual times that they see the events occur, i.e.,

when they receive the light signals, they will record later
actual times than will M. This is quite natural since some
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Fig. 2. Space-time map marked in hours and miles. The horizontal dashed
lines represent radio signals broadcast from a central clock (church
bell).
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Fig. 3. Space-time diagram marked in seconds and light seconds. To this
scale, dashed lines, representing light signals are drawn at 45°.

time passes while the light signals travel. We are concerned
only with the number of seconds by which event B is later
than event A, and all will agree on this number.

Now for the interesting case. Suppose that L and R re-
main stationary, but that M is in motion, at a (very rapid)
steady speed, to the right, say, while we repeat the process.
We draw this situation in Fig. 5.

At event A, M starts his stopwatch and at event B he stops
it. He will record this time interval from his own watch, and
we will call it a new name, A7, to remind us that this is the
time measured by a moving observer. Note that A7 is not
the length of the line segment drawn between the events A
and B. Since this segment is not vertical, part of its length
as drawn is due to the spacial distance between the events,
and the task which will occupy us is to unravel this depen-
dence to determine A7. Note also that the light signals sent
out by M are drawn at 45°. This reflects the fact that the
speed of light is always the same, for everybody, no matter
how the light is produced, or by whom. Naively, we might
expect that since M’s flash apparatus was traveling to the
right, the light signals should travel faster to the right and
slower to the left. This is, in fact, not the case.

We would have obtained exactly the same result if we had
confiscated M’s apparatus, and instead had placed two flash
mechanisms at rest along the route and instructed M to
flash them as he went flying along. This seemingly strange
result is due to the nature of light: it is pure energy and
behaves differeritly from material objects.” The flashing of
a light merely serves to deposit a certain amount of pure
energy into space-time at some event. Thereafter, of its very
nature, this pure energy travels along at the speed of light
“away” from that event, not from the person or thing which
caused the event. Once we grasp that light naturally in-
habits space-time, and needs no memory of its prior history,
this result becomes understandable.

The independence of the velocity of light upon the motion
of its source is one of the central principles upon which the
theory of special relativity is based. It is a confirmed ex-
perimental fact which was discovered before the turn of the
century and puzzled everyone until Einstein published his
theory. Basically, Einstein’s attitude was, “Look, this is a
confirmed fact of nature, so if it doesn’t fit with your prej-
udices, you will just have to change your point of view.”

Now look again at Fig. 5. It is obvious that A¢; is much
longer than Atg, so that our two stationary observers
measure different elapsed times between the events A and
B. This is quite natural since, for example, event B happens
much closer to R than does event A. Consequently, the light
signal from B reaches him much quicker than did the signal
from event A, and he measures a small elapsed time be-

809  Am. J. Phys,, Vol. 48, No. 10, October 1980

tween the events as he sees them. Exactly the opposite is
true for L, so that he measures a much longer elapsed time
between the events as he (L) sees them.

What then will the moving observer M say? Surely he
has the best view of the two events. Since they both happen
to him, he is the observer “on the spot.” He records an
elapsed time by looking at his own watch. This time interval
will be called the “proper time,” since it is measured by the
moving observer who “properly” consults the watch which
he is carrying along with him, rather than trying to look at
our clocks. Our stationary clocks, even if spread all along
his route, would be very difficult for M to use since from his
point of view, they are speeding past him as he tries to read
them. ‘

We will try to determine a rule, called the T rule, for
calculating A7 if we know the intervals Az, and Aty
measured by our stationary observers:

AT = T(AtL, AIR). (3)

We must find out what this function 7" is. We already know
something about it from Fig. 4 and Eq. (2): if At| = Atg,
then At = At = Arg. If in this case we call Ar the number
to which they are all equal, then

T(At, Ar) = At. | (4)

Also, it should be clear that if we drew another figure ex-
actly like Fig. 5 except that Aty and Aty were, say, twice
as big as in Fig. 5, then A7 should come out twice as big
also. In general, this means that if we replace Atg and Az
by s X (Atg) and s X (Aty), where s is any number,
then

T(s X At,s X Afg) =s X At =5 X ;T(AIL,AIR), (5)

and this principle is termed the “homogeneity of time.”

Finally, if we drew Fig. S exactly the same except that
M moved from R to L instead of from L to R, he should still
measure the same elapsed time A7 on his own watch. This
is an expression of the “isotropy of space”: a trip from one
point to another is exactly the same as one in the opposite
direction at the same speed.® Therefore,

T(AIR,AtL) = T(AIL,AIR) (6)

since the only thing that would change is that the time in-
tervals measured by L and R would just be exchanged.

There are only two simple functions T which have the
properties (4), (5), and (6). Either

T(AtL,Atg) = (1/2) X (A1 + Atg) {(Newton) (7)

(SEC

at | v T | Aty

X
L M R (LIGHT-SEC)
Fig. 4. Space-time diagram with three stationary observers.
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Fig. 5. Space-time diagram with two stationary observers and one in rapid
motion. The moving observer’s watch records an elapsed time Ar, which
is not simply the length of the line between A and B.

or

T(AtL, Atg) = v/ (AIL) X (Atg) (Einstein). (8)

The first choice leads to Newton’s concept of a universal,
absolute time and has been proven wrong by experiment.
The second choice (8) is actually the correct choice, the one
that nature makes. If one has the point of view that the laws
of nature should be both simple and interesting, then one
would expect (8) to be the correct answer because simplicity
singles out either (7) or (8), and, as we shall see, (8) has
some very interesting consequences.

The proof that (8) is the correct rule of nature requires
some simple geometry and one further principle called the
“relativity postulate,” which states that the laws of nature
should appear to be the same to anyone, whether they are
at rest or in steady motion. Nevertheless, we will put this
proof off until Sec. VII and begin right away to investigate
some of the more interesting consequences of (8), the proper

time formula:
A7 = /(A1) X (AtR) . )

For example, let’s ask whether anyone can ever travel
faster than light? Figure 6 shows a hypothetical space-time
diagram for the following sequence of events: M travels a
little faster than light across the distance D between L and
R. The two events to be timed are M’s departure from L,
at which L sends a light signal to R to tell him that M is on
the way, and M’s arrival at R, at which R sends a light
signal back to L to tell him that M has just passed by.

Note first that L sees M go past on his way to R, and a
long time At later receives the light signal from R con-
firming M’s arrival. Nothing unusual here. R, however, has
an unsettling experience: he sees M arrive, going past him
to the right, before he sees him depart (in broad daylight,
the light signal from L could be replaced by the natural il-
lumination of the event)! The elapsed time interval between
the two events as recorded by R would therefore be negative,
while Az is, of course, a positive number. When we now
ask how much time has elapsed, according to M, the proper
time formula, (9) yields an imaginary answer, since At is
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Fig. 6. Hypothetical space-time diagram representing a trip faster than
the speed of light.

a negative multiplier under the square root. This would
of course be hotly disputed by M, who would claim that his
watch is no more imaginary than he is! Our conclusion from
all of this is, of course, that both M and his watch are purely
imaginary, and no one can ever travel faster than the speed
of light.

Let us consider, a real situation, namely, what happens
when M makes his trip from L to R very, very fast, but a bit
slower than light. This situation is diagrammed in Fig. 7.

We notice that L sees virtually the same sequence of
events and records a long time interval Ary. In contrast,
however, R now sees events unfold in a reasonable fashion,
and records the very short, positive time interval Arg from
his own observations. Now since L and R are a distance D
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Fig. 7. Space-time diagram representing a real trip at slightly less than
the speed of light.
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Fig. 8. Comparison of the collective observed trip time At to the three
observed elapsed times Az, Atg, and A7.

apart, and light signals travel at speed ¢, the time for a light
signal to pass from L to R, or vice versa is just D/ec. From
Fig. 7 we see that the time recorded by L is just twice the
travel time for one of the light signals, plus the short time
delay measured by R, or

Aty = 2Djc + Atg. (10)

Suppose that the distance between L and R is 7-15 light
seconds, for example, and that R measures an elapsed time
of 1 sec. Then (10) indicates that A7y =2 X 7-b+1=16
sec. The proper time formula (9), however, telis us that
according to the watch carried by M, the trip lasts a total
of v/16 X 1 or only 4 sec. Of course, we should expect M’s
watch to yield an elapsed time somewhere between the long
time recorded by L and the short time recorded by R. The
result, however, becomes remarkable when we carefully
inspect our space-time map and realize that the trip took
1 sec longer (AzR) than it took the initial light signal from
L to arrive at R, or a total of 8-/ sec!

We have arrived at the fascinating result that if a person
is in motion with respect to us, then time itself actually
evolves more slowly for him than it does for us watching
him. Furthermore, the faster he travels, the more exag-
gerated this effect becomes, since the faster he travels, the
smaller becomes the number Atg, and this small number
is a multiplier in the proper time formula (9).

With a little care, we can relate the time interval M
measures to his speed and to how long we “know” it took
to make the trip. Figure 8 illustrates the point. “We” will
make the comparison by arranging with L and R who are
at rest along with us to act as our agents. First, we have L
and R synchronize their watches with ours.® M now makes
his rapid journey and we later obtain from L and R not only
their measurements Az and Atg, but also the timeon L’s
watch when M left and the time on R’s watch when he ar-
rived. We subtract these last two numbers to obtain the time
interval Az shown. This is how long we “know” the trip took.
M measures of course a small time interval A7 which we
can calculate from Az and Arg. We can then report that
“our collective watches measured At for the trip, while M’s
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measured A7, so his watch must be running slowly com-
pared to ours.”

We can relate A7 and At exactly. The time it takes for
the light signal from event B to reach observer L is D/c.
Therefore

AIL = Ar+ D/C

The light signal from event A reaches R in D/c also since
it must travel the same distance, so that

Atg = At — Dje.
Then
A7 = +/(At)(AtR)
At = \/(At + D/c)(At — Djc),
or

At =/(ADI=DYe2. (11)

We remarked earlier that A7 was not simply the length
of the line segment drawn between the events A and B, and
that we would seek to unravel its dependence upon the
elapsed time between the events, At, and the distance be-
tween them, D (both according to us). We have just com-
pleted this task'0; however, we can express our result in a
simpler and more convenient form as follows. Suppose M
travels at the constant speed v, relative to us, in moving
between the events A and B. Then since he covers the dis-
tance D, in the time At, according to us,

D=yp XAt

If we substitute this into (11), we obtain
A1 =/ (A1)? — v2(A1)?/c?,
AT =+/(A)2(1 — v2/c?),

or as our final result,

At = At/T =02, (12)

This is the exact relativistic result relating the proper time
A7, measured between events which happen to him, by an
observer moving relative to us at a constant speed v, to the
time Ar which we collectively observe between the same
two events.

As an example, suppose that M’s speed is 80% of the
speed of light according to us. Then v/c is 0.8, v2/c2 = 0.64,
1 —0.64 = 0.36, and the square root of this number is 0.6.
In this case we find that A7 = At X 0.6, so that if we ob-
serve a time interval At of 10y, say, M will observe only 10
X 0.6 = 6 y. Similarly, if M’s speed were 99.99% of the
speed of light, and we (collectively) observed a trip time of
10 y, only 6 weeks would have passed for M! On the other
hand, a car traveling on an interstate will have a typical
speed of about 80 feet /sec., while the speed of light is about
186000 miles/sec. In this case the ratio v/c is about
0.000000009 and the difference between clock rates is so
very, very small that measuring it is impossible. That is why
our intuition of one absolute time for everyone is not ob-
viously wrong to us as we observe earth-bound objects.

III. TWIN “PARADOX”

One of the more interesting applications of our results
is the so-called clock, or twin, paradox.!! Two identical
twins choose very different careers, I becoming an ac-
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countant, and I1 an astronaut. 11 is sent on a mission to in-
vestigate a very distant stellar system S. He is to travel at
very nearly the speed of light to S, spent 1 y collecting data
there, and return, again at very nearly the speed of light.
Except for brief periods of time during take-offs and land-
ings, when his rocket will be firing, IT will be coasting in
space, with no physical sensation of motion, so that our
proper time formula applies to his watch, and also to his
body, since his heart and metabolism are natural biological
clocks.

Now since most of the trip II will be moving at very
nearly the speed of light with respect to brother I, who re-
mains on Earth, time will evolve much more slowly for him
than for brother 1. Therefore if his speed is suitably ad-
justed, he can return to earth having aged only two or three
years to confront a very elderly, long retired accountant,
brother I, at the landing field. This effect is quite real, and
while it is not likely to occur during our lifetimes, it may well
become commonplace sometime in the next few centu-
ries.

Now a true paradox is a puzzle, a set of circumstances
which gives rise to two different and mutually contradictory
outcomes. The so-called twin paradox, however, is a puzzle
which apparently (but not in fact) results in a contradic-
tion.'2 The possible confusion arises when we consider the
same sequence of events from the point of view of brother
I1. During most of the trip, he has no physical sensation of
motion, and so, according to the relativity postulate, may
consider that he is himself at rest while brother I, and the
entire Earth, speeds away from him, and returns. Con-
sciously, of course, he “knows” better, but if we concentrate
on his watch, or metabolism, our point is a valid one. Con-
sequently, brother II might reason that since brother I is the
twin in rapid motion, I’s watch, and metabolism, is running
slower than his own. He may therefore expect to be met at
the landing field by an accountant who is younger than
himself. This is the apparent paradox, since there can be
only one outcome to the meeting.

That our first analysis is the correct one, and that no
contradiction arises, follows from a careful inspection of a
space-time map of such a situation. As an additional aid to
clarification, let us suppose that the trip begins on their
mutual 25th birthday, and that brother I, on earth, broad-
casts a happy birthday message to his traveling twin at in-
tervals of one Earth year over the entire time span of the
trip. Furthermore, brother II broadcasts a message back
to earth upon his arrival at star system S. These circum-
stances are represented in Fig. 9, where the scale is years,
and light years, and II’s speed has been chosen to be only
88% of the speed of light, for convenience in drawing the
diagram.

From Fig. 9 one may read off that an inhabitant on S will
observe the outward bound trip to require 1 y (Atg), while
the safe arrival signal reaches Earth some 16 y after II’s
departure (At ). Since the return trip is made at the same
speed, brother I on earth, changing roles with S for the re-
turn trip, will observe the return to require 1 year also.
Adding, then, the approximately one year that 11 spends at
S, I greets his returning brother after about 18 Earth y have
clapsed, when 1 is 43 y of age.

What of brother 11? Except for the short periods of ac-
celeration (a day or two each) our proper time rule, Eq. (9),
tells us that the outward bound trip requires 4 y of II’s time
(At =16y, Atg = 1 y). He remains about 1 y (while ev-
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1
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{LIGHT YEARS)

1 D s
Fig. 9. Graphical representation of the twin paradox. [ remains at home
while II travels at about 88% of the speed of light a distance D = 7.5 light
years to star system S. Yearly greetings - - - are broadcast by I, while 11
sends only a safe arrival message — - —. The inset shows one of the four
acceleration stages, marked a.

eryone is at rest, so that their clock rates are the same), and
requires another 4 y of his own time to return. There are also
four very small but mysterious amounts of time which
elapse on II'’s clock while he is accelerating, events repre-
sented by small curved portions of his world line. We are
not in a position to calculate these times, but since they are
very small,’* we conclude that he returns to earth after
about 9 y have elapsed for him, or when he is chronologi-
cally, and biologically, only 34 y of age.

Now what about the paradox? We notice that II receives
the first of his yearly birthday messages from I upon his
arrival at S, some 4 y of his own time after his departure.
Of course, 11 realizes that the signal was not sent three full
years late. He knows that he was, after all, some distance
from Earth after 1 y and that consequently the message took
some time to reach him. Since he has been traveling at 88%
of the speed of light, or from his perspective, the Earth has
been traveling away from him at that speed, he concludes
the earth should have been 0.88 light years away at the time
that the signal was sent. Now the speed of light is the same
for everyone, no matter how it is produced, and from II’s
viewpoint, he is at rest, when a signal is sent from a rapidly
moving Earth at a distance of 0.88 light years. It should
have been received, therefore, 0.88 y later. Since a timely
message would reach him, then, after 1.88 y, but the actual
message arrives after 4 y have elapsed, 11 concludes that the
message was sent much too late, or that I’s watch is running
much slower than his!

If the tale ended here, we would indeed have a contra-
diction. Fortunately it does not. II receives the second
birthday greeting just as he is departing from S, 1 y after
receiving the first message. Notice, however, what 11 ex-
periences during his return trip. While 4 y of his own time
elapse, he receives 16 birthday messages from Earth. With
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Fig. 10. Construction of a space-time diagram by a single observer O
equipped with a clock and radar apparatus.

a jolt he realizes that I is aging much faster than he is, and
fully expects to be greeted by an older I upon his arrival.

A little thought leads to the conclusion that the paradox
was avoided when II stopped and turned around. During
a period of acceleration, such as that marked a in the insert
to Fig. 9, II experiences tremendous forces which cause him
to realize that he is changing his state of motion and that,
as a consequence, the clocks of those he has left behind are
running at a rate different from his own. Had he continued
on his outward journey forever, he could and would observe
all other watches to be slower than his own, due to his
change of state, but then, of course, he could never return
to confront his twin. Having made those subsequent changes
of his state of motion which allowed him to return, however,
he no longer can apply the relativity postulate to claim that
he is, and has been, in a state of rest while the rapidly
moving Earth turned about and returned to him.

1V, CONSTRUCTION OF SPACE-TIME
DIAGRAMS; SIMULTANEITY

Let’s digress for a moment into the question of how the
t-x maps or space-time diagrams are actually constructed.
One observer equipped with an accurate clock and a radar
device is all that is necessary (Note: no rulers!). The tech-
nique is illustrated in Fig. 10.

The world line of the observer O, who is at rest, is the
vertical line, and the location coordinate x is zero on that
line. The dashed line is that of one of the radar signals sent
out by O which is bounced back by some event E. Now O
is aware that radar signals travel at the velocity of light ¢
and that it takes one exactly one exactly as much time to
return from an event as it does to go out to one. Since O
sends out the signal at event A, at time ¢;, and receives the
echo at event C, time 1,, he realizes that event B, halfway
on his worldline between A and C occurred simultaneously
with E. B therefore has the coordinate values [(z2 + 7,)/2,
0] and E has the same time coordinate value. Now the total
elapsed time for the round trip of the radar signal is the
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difference 15 — ;. Traveling at the speed of light, the signal
then covered a total distance ¢(z — ¢1). Keeping in mind
that the signal traveled straight out and came straight back
(Fig. 10 is a space-time map), O realizes that the distance
to the event E is just half the-total distance, or ¢(t; — t;)/2.
Since O himself is at rest at the x-coordinate value zero, E
has the x value, c¢(¢, — #1)/2. Finally, note that as a geo-
metrical figure, triangle AEC is a right triangle, that the
line segments AB, BC, and also BE are of equal length, and
that the line BE is parallel to the x axis.

Next consider another such space-time map, this time
constructed by an astronaut moving at a constant velocity
with respect to the original coordinate system. The astro-
naut uses his own (moving) clock and radar system to
construct his ¢’ — x” map. The situation is illustrated in Fig.
11.

The world line of the astronaut, as constructed by O in
the original coordinate system, is the tilted line marked ¢'.
The dashed line is the radar reflection of an event E, which
is the same event to both observers. (Remember that an
event occurs sometime, and someplace according to all
observers, although they may disagree as to where and
when.) For convenience in making our point, we have ar-
ranged in Fig. 11 that O and the astronaut are at the same
location at event A, the sending out of the radar signal, and
that both observers receive the echo, although at different
events, C’ and C.

To the astronaut, an event B’ on his own world line,
halfway between A and C’ is simultaneous with the event
E. Further, a line B'E, drawn on his own map, will be par-
allel to his x” axis. In fact, all lines of simultaneity will be
paraliel to the line B’E, and all lines which mark a fixed
location at a certain distance from himself will be parallel
to his own world line. Finally, to the astronaut, on his own
map, the line segment B’E will be of equal length to both
AB’ and B'C".

These geometrical facts are also true, however, in Fig.
11, which is drawn by O in the original ¢-x system. This
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Fig. 11. Space-time axes of a moving observer, constructed by use of his

(moving) apparatus, but drawn in the original coordinate system by O.
The chronological ordering of events A and D is reversed for the two ob-
Servers.
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follows from the fact that AB’ = B’C’ in the right triangle
AEC’. Further, in the same figure, since ¥ B’AE = «
B’EA, it follows that the angle which B’E makes with the
x axis (and which therefore the x’” axis makes with the x
axis) is the same angle as that which the ¢ axis, the world
line of the astronaut, makes with the ¢ axis.

An inspection of Fig. 11 should then make it obvious that
whether or not two events occurred simultaneously is a
matter of opinion, the answer depending on which observer
is consulted. The observer O would claim that B’ occurred
before E, while the astronaut would find them to be si-
multaneous.

Similarly, the astronaut would find that B occurred after
E, while O would consider them simultaneous. Which ob-
server is correct, you might ask? The proper response is that
both are correct; simultaneity is entirely relative. Finally,
if we ask each observer to simply rank in proper chrono-
logical order event A, and the isolated event D shown in Fig.
11, we will obtain conflicting answers. Since A lies on O’s
x axis, while D lies above it, O will rank them: first A and
then D; in contrast, while A lies also on the astronaut’s x’
axis, but D lies below it, he will rank them: first D and then
A. Again, both are correct from their relative points of
view.

Surely, you might conclude, disagreements of this sort
can lead to paradoxical situations. Indeed, after we obtain
one more result, we will investigate one such situation, the
‘‘pole vaulter paradox,” in Sec. VI.

V. LENGTH CONTRACTION

We have already seen that a watch carried by a moving
observer runs at a rate different from our own. Since time
is not an absolute for everyone, it should not be surprising
that space, or distance, is also relative.

We can develop this result most easily by setting out two
objects a measured distance D apart and asking a moving
observer M how far apart they are. The experiment is shown
in Fig. 12. We determine the elapsed time Az for M to pass
between the markers 1 and 2 in the usual way. Conse-
quently, we can assign to M a speed v, relative to us, such
that D = v X At. M, of course, measures on his own watch
a smaller elapsed time A7, given by (12).

Now applying the relativity postulate, we realize that
from M’s point of view, he is at rest while markers 1 and 2
pass him by at the same speed v, but in the opposite direc-
tion. M therefore assigns them a distance apart A, given by
the same law of nature, distance = rate X time, or A
= p X A7. Notice that M uses, of course, the elapsed time
A7 on his own watch. Since this is a smaller elapsed time
than we measure, the distance A which he obtains is smaller
than our D.

We can make this precise. Since A7 is related to Atz by
(12), M obtains the result

A =vAT = vAt /1 —v%/c2.

But the distance we obtain, D, is just vAz. Substituting this
quantity, we obtain the result

A =D+/1 —v?/c? (13)

relating the length A of an object measured while it is in
motion, along its length at speed v, to the length D obtained
by measurements made by those for whom it is at rest. This
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At

US: D=v x at
M: A=v x AT
Fig. 12. M moves at speed v relative to us over a measured distance D.
From his perspective, the markers 1 and 2 whiz by him at the same speed
v, but in the opposite direction. M measures a distance A between the
markers.

result is commonly known as the Lorentz-Fitzgerald length
contraction.

As an example, consider an arrow 10 in. long. If this
arrow could be shot past us at 80% of the speed of light, we
would measure its length, as it passed us, to be only 6 in. Of
course, at the ordinary speeds of our everyday experience,
we do not notice this effect, since it is then very, very
small.

Finally, let’s consider that our result (13) should not
really be surprising. Since we have established that our
initial prejudice in favor of one absolute time rate must be
abandoned, we should have no reason to expect that our
similar initial prejudice in favor of an absolute measure of
distance can be retained.

VI. POLE VAULTER PARADOX

An interesting application of the length contraction re-
sult is the so-called pole vaulter paradox.'4 We give a 20-
ft-long vaulting pole to a swift runner, tell him to go some
distance away and come running back, holding the pole
horizontally, toward a barn 30 ft deep. The front door of the
barn is open, while the back door is closed. We reassure him
that it is our intention to open the back door just before the
leading edge of his pole arrives there so that no harm will
come to him in the process. Furthermore, we tell him that,
as an experiment, we plan to close the front door just after
he has passed.

Since the barn is fully 10 ft deeper than the pole is iong,
we reason that there will be a short span of time when the
pole will be completely enclosed within the barn. Accord-
ingly, we plan to first close the front door behind him, and
then to open the back door in front of him, and we tell him
this also. For safety we will station an observer at each door
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OUR VIEW

HIS VIEW
Fig. 13. Pole vaulter paradox. Top view: we observe a runner, carrying
a 2-ft-long pole, approaching an open barn 30 ft deep. Bottom view: the
runner, carrying a 20-ft-long pole, observes an open barn 3 ft deep to be
approaching him.

and equip them with door mechanisms which operate al-
most instantaneously.

Although he has some misgivings over the arrangements,
the runner finally agrees to the plan, and comes running as
fast as he can, about 25 miles/h. The experiment, of course,
succeeds as designed, with the runner as well as the vaulting
pole being completely enclosed within the barn for a short
period of time.

Having gained his confidence, we now propose to him a
second experiment. We show him a remotely controlled
flying platform, and ask him to stand on it, holding the
vaulting pole in the same horizontal position, while we re-
peat the procedure at 99.5% of the speed of light. Being
completely ignorant of the theory of relativity, he agrees.

Now at 99.5% of the speed of light, (13) indicates that a
moving object will be contracted in the direction of its
motion to Y, of its natural length. As the experiment begins,
therefore, our forward observers inform us, via radio, that
a very thin runner, holding a pole just 2 ft long is ap-
proaching our 30-ft-deep barn.'> Therefore, we have no
reason to alter our plans, and will close the front and then
open the back door, in order that for a brief span of time,
the runner will be enclosed. Figure 13 illustrates the sit-
uation.

Unhappily, however, the runner, who has no physical
sensation of motion, observes a barn only 3 ft deep rushing
toward him while he is simply standing on a platform
holding a 20-ft pole in a horizontal position. Belatedly, he
recalls that we plan to first close the front door behind him
and then to open the back door before the vaulting pole
reaches it. Since a 20-ft pole cannot possibly be enclosed in
a 3-ft space, he concludes that he is about to be sacrificed
to science.

The possible paradox, of course, is that there can be only
one outcome to the experiment: either the runner meets his
doom, as he expects, or no collision occurs, as we expect.
Perhaps you would like to take a few moments to decide for
yourself what will occur and why.

Once again, the resolution of the apparent paradox fol-
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lows from a careful inspection of a space time diagram. In
Fig. 14, the two events of interest are event A, the closing
of the front door behind the pole, and event B, the opening
of the rear door just before the leading edge of the pole ar-
rives.

Since we have designed the experiment, and fuily expect
the pole to be briefly enclosed within the barn, that is indeed
what we observe. In our space-time map of the experiment,
event A occurs before event B. Now since we observe no
collision to occur, the runner, of course, must observe the
same thing. His explanation of this unexpected outcome is
that, in fact, we opened the rear door first, so that his
vaulting pole could pass safely beyond the back of the barn,
long before we closed the front door behind him, i.e., the
chronological order of the events on his (¢#'-x”) space-time
map is first B and then A. The fact that simultaneity is
relative, as is the temporal order of certain events, is the
resolution of the “paradox.”

VII. PROOF OF THE PROPER TIME
FORMULA

Now that we have shown that our proper time rule,
Ar = T(AIL,AIR) =4 (AIL)(AIR), (14)

has some very interesting consequences, we would like to
end by completing our demonstration begun in Sec. 11, that
it is the correct law of nature. For this purpose it is necessary
to use two moving observers, M and Mg, traveling together
at the same speed, as well as our usual pair of stationary
observers, L and R. Their world lines are shown in Fig.
15.

OUR
VIEW

BACK DOOR FRONT DOOR X
1l
pA
HIS
VIEW
FRONT POLE BACK xT

Fig. 14. Space-time diagrams of the temporal sequence of two events:
Event A, the front door is closed behind the pole, and event B, the rear door
is opened before the pole. Top view: we observe A to precede B, so that the
pole is enclosed. Bottom view: the runner observes B to precede A, so that
some part of the pole always protruded from the barn. For clarity, light
signals sent at the beginning of the experiment are also shown.
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Fig. 15. World lines of two moving observers, My and Mg, as well as those
of L and R. Use of the relativity postulate, that the laws of nature must
be the same for My and My as they are for L and R, leads to the correct
proper time formula.

Ignore, momentarily, the cross hatching in the diagram,
and notice that A7y represents the proper elapsed time
between the events A and B, which were shown in Fig. 5 of
Sec. II. We now consider these events to be those of the
arrival of light signals sent out by L at events C and D. A7
represents the time interval between C and D as observed
by the second moving observer, M.}6 Further, we imagine
that R sends out light signals at events E and F so that they
arrive exactly at events A and B. This may in practice be
hard to arrange exactly, but it is perfectly possible.

Now we have the (as yet unspecified) T rule

ATR = T(AIL,AZR), (15)

which allows the calculation of the proper time between two
events, as witnessed by a moving observer, from the two
observed elapsed times Aty and Atg. At this point we must
invoke the principle of relativity: the laws of nature must
be the same for observers moving with a constant velocity.
After all, M, and Mg have no physical sensation of motion,
and to them, it is L and R who are moving (to the left).

From the perspective of M and Mg, L, who is a moving
observer, sends out light signals from events C and D, which
occur over a proper elapsed time interval Azcp, as mea-
sured by L. My and Mg, stationary observers, record the
intervals Aty and Arg. Using the same law of nature, the
T rule, M1 and Mg would therefore calculate

Atep = T(ATLATR). (16)

Now from Fig. 15 it should be clear that the elapsed time
interval Atcp is numerically equal to the interval Arg
measured by R. Equation (16) therefore may be written

Atg = T(ATL,ATR). (17)

From the same figure, it should be equally clear that Atgr,
as measured by R, is numerically equal to the interval At .
Now focus on the two cross-hatched regions, and observe
that as geometrical figures, their boundaries are exactly
parallel, one to the other. It follows that the ratios of their
similar sides must then be equal!” or

ATL/ATR = AtCD/AIEF.
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Since Atcp = Atg and Atgg = Aty we have, then

ATL/ATR = AIR/AtL
or

ATL = ATR(AIR/AIL).
We substitute this result for A7y in (17) to obtain
Atr = T((ATR)(Atr)/Aty, ATR),

and then multiply the final A7y above by Aty /At , which
is numerically equal to 1, to obtain

AIR = T((ATR/AtL)AtR,(ATR/AIL)AIL). (18)

Recall now the principle of the “homogeneity of time,” as
expressed in (5), and identify s as Arg /Aty . It then follows
that

AIR = (ATR/AIL) T(AIR,AZL)
or
(AIL)(AIR) = ATRT(AIR,AIL). (19)

But the principle of the “isotropy of space,” (6), indicates
that the 7 rule on the right-hand side of (19) is the same T
rule as in (15). It follows then that the right-hand side of
(19) is just the square of our T rule, or

(Arp)(Aty) = [T(ArL,Atr)]%
Therefore,

T(AIL,AIR) =4/ (AZL)(AIR).

APPENDIX

For completeness we demonstrate here how our meth-
od can be utilized to obtain the usual Lorentz transforma-
tion formulas. The majority of the necessary material has
been presented in Sec. IV. Additionally, we require the use
of (12) and (13).

We wish to obtain an expression for the values of the
coordinates (7, x) of an event in terms of the values (¢/, x’)
assigned to the event by a moving observer. The geometry
is that of Fig. 16, where ¢ and x are marked ¢g and xg. The
astronaut considers event B, on his own world line, to be
simultaneous with event E, and so assigns the value (¢/,0)
to event B.

We will suppose that at event 0, both observers set their
respective clocks to zero, so that 0 serves as the mutual or-
igin of the two coordinate systems. (Note that E does not
lie on a light signal line from 0.) Therefore ¢’ represents the
elapsed time between events 0 and B according to the
moving observer. We assign event B the values tg and xg,

and from (12) we have that ¢’ = tg/1 — v2/c?, or
tg=t'/(1 —v2/c2)i/?,

Further, from our perspective the astronaut moving at speed
v has traveled a distance vtg to arrive at event B. Therefore
Xp = vtg, Or

xg =vt'/(1 = v?/c?)1/2,

Now the astronaut at event B knows that the (simulta-
neous) event E is located a distance x’ from himself. We
would measure the same distance at that moment to be D,

however, and according to (13), x’ = D(+/1 — v%/c?),
or
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Fig. 16. Coordinates (¢’, x’) of event E, assigned by a moving observer,
may be related to (tg, xg) via consideration of the event B.

D = x'/(1 - v2/c))1/?,

The location of event E, according to us, is then x = D + xp,
or

x’ + ot’
(1 = 0227 (1 — v/c2)\/2
Recalling that the ¢’ axis makes the same angle with the ¢
axis as the x” axis makes with the x axis, we realize that to
obtain the complementary expression for ¢ in terms of ¢’ and
x’, we need only replace ¢’ in (A1) by x’/c (c sets the scale
of our diagram) and x(x") by ct(ct’).
Therefore,

(A1)

x=

of = ct’ vx’/c
(1 —oYed)12 7 (1 —vc2)l2"
An alternative procedure is to use the relativity postulate.
To the astronaut it is we who are in motion, with a speed

(—v). He would therefore apply to us the same law (A1)
to write

(A2)

. x 3 vt
(1 = 02127 (1 = p2/c2)1/2

The results (A1) and (A3) may then be used together to
obtain (A2), as well as the result

X

(A3)

ct vx/c

= - .
¢ (1 = 0%c?)12 (1 = v2c2)12

(A4)
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directly at the observer as it approaches. The same is true of the runner,
who is facing the observer. In fact, the contraction of a moving object
along its direction of motion can never be seen by a single observer, even
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