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Several articles have considered the apparent shape of a relativistic sphere. One interesting finding
showed that, under certain conditions, the surface of the sphere may appear concave. This article
concentrates on the case where the observer is at the origin and the sphere moves in the positive x
direction with its center on the x axis. The sphere actually hits the observer, and one of the findings
presented here is that for any speed v, 0 < v<c, part of the surface appears concave for some part of

the motion along the x axis.

I. INTRODUCTION

There is now an extensive literature on the apparent
shape of objects moving at relativistic speeds. By apparent
shape we mean the perceived shape that a stationary ob-
server sees when photons, emitted from different parts of
an object at different times, arrive simultaneously at his
position. Mathews and Lakshmanan' corrected earlier
misconceptions in the literature, by Terrell,” for example,
that objects which subtend small solid angles at the observ-
er appear simply rotated, and retain the same apparent
shape to all observers. They showed that the apparent
shape is related to the rest shape by a combination of non-
uniform shear and extension or contraction, all parallel to
the direction of motion, and that this does not reduce to a
rotation, even in the case where the angle subtended is
small.

Because of its simple rest shape and relevance to astron-
omy, several articles'~® have considered the apparent shape
of a relativistic sphere. In particular, Scott and van Driel’
presented three-dimensional views of a sphere that show
the apparent distortion that occurs at various speeds and
distances from the observer. One of their most interesting
findings was that, under certain conditions, the surface of
the sphere may appear concave. In spite of all the earlier
work performed on a moving sphere, the sphere is still an
interesting and worthwhile object to study, and this article
concentrates on the case where the observer is at the origin
and the sphere moves in the positive x direction with its
center on the x axis. This is a special case of the situation
considered by Scott and van Driel” and a complete analytic
treatment of the apparent shape can be given for all posi-
tions and speeds. Since the apparent shape is always rota-
tionally symmetric about the x axis in this situation, the
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three-dimensional shape can be unambiguously inferred by
plotting the outline in the (x,y) plane. A difference
between this article and previous studies of spheres is that
the sphere actually hits the observer, and one of the find-
ings presented here is that for any speed v, 0 < v<c, part of
the surface appears concave for some part of the motion
along the x axis.

II. GENERAL SHAPE FOR MOTION PARALLEL
TO THE x AXIS ~

The observer is at rest at the origin O of a coordinate
system S. The sphere is at rest in the system .S’ which is
moving in the x direction with speed v, and has center
(0,b,0) and radius R and S'. The x axes are parallel and
the two origins are coincident at ¢ = ¢’ = 0. The objective
shape of the sphere, as measured in S, is

7 (x —Bct)’ + (y—b)’+ 22 =R?, (1)
where, asusual, f = v/cand y = (1 — 8?) "2 The objec-
tive shape (1), as many articles have noted, is an oblate
sphieroid. To calculate the apparent shape, let the photons
from all parts of the surface of the sphere arrive at the
observer at time £ = T. If a photon appears to have beén
emitted from the point P = (x,y,z) in S, it must have been
emitted at time

t=T— x>+ +y)"%/c. (2)
Substituting (2) into (1) gives the apparent shape as
V2[x — BeT + B(x* + y* + 22) 2}

+(y—br+z=R">. (3)

It is convenient to use dimensionless coordinates X = x/R,
y=y/R,Z = z/R, time parameter a = ¢T /R, and impact
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parameter p = b /R. Rewriting Eq. (3) in terms of these

and dropping the bars gives

Ylx—Ba+Bx*+y +2) P+ (y—pP+2=1
4)

The apparent shape is most easily analyzed by solving Eq.
(4) for x as a function of y and z, which gives

» =7{E. —B[E:X + 1 =B +2)]"}.
(5)

Here,
E, =Bat+y '[1-(y—p)Q-21", (6)

where the ( + ) signs refer to the front and back surfaces.

Asymptotic expressions as @ — + oo follow readily from
Egs. (5) and (6). When the sphere is moving toward the
observer and a— — o, the sphere appears to have the
shape

x, ~—=[B/(1+B)]a+ [(1+8)/(1
X1 — (y_p)z_zzll/z’
which is the prolate spheroid
[A=B) /(0 +8) 1x—Ba/(t -B)]?
+@p—p)r-2=1, (7
with the long axis pointing toward the observer. Similarly,

when the sphere is receding from the observer and
a— + o, the asymptotic shape is the oblate spheroid

[(1+A/(1—=B)1[x—Ba/(1 +B)]*
F—preR=1, (8)

foreshortened in the x direction.

_ﬂ)]l/Z

=-20 @ = -0
a=0
a=ag a=az a=20

Fig. 1. Apparent shape of a sphere moving along the x axis with speed
B = 0.5. The dots mark the position of the observer for each time except
a = + 20, when the observer is far from the sphere. The observer is inside
the sphere for — a,; < @ < a,, where ¢, = 1.732 for # = 0.5. In addition,
the back surface of the sphere appears concave for @, < @ < a, where, for
B=0.5, a, = 1.1547 and a, = 3.4641. Expressions in terms of B are de-
rived for a,,, @, and a, in the text.
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Fig. 2. Same as Fig. 1 but for 8= 0.9. Here, a, = 0.4843, a, = 0.2549,
and a, = 4.843.

II1. SPHERE TRAVELING DIRECTLY ALONG
THE x AXIS

In this case, p = 0 and the rotational symmetry of the
apparent shape about the x axis means no details are lost if
we restrict attention to the intersection of the shape with
the (x,p) plane. This leaves

X4 27/2{Ei —-BlE%: + (1
where

Ei :Baiykl(l _y2)|/2.

_BZ)yZ]l/Z}, (9)

(10)

——

a=-20

i

R

= -ag

QCD
D => >>

a=013 a=0.2

> 5 ) )
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Fig. 3. Same as Figs. 1 and 2, but for £ = 0.99. In this case a, = 0.1425,
a, = 0.0716, and a, = 14.249.
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The evolution of the apparent shape with time can now be
analyzed by studying a series of outlinesx , = x , (y) for
various values of B and a. Figures 1-3 show the outline at
different values of a for speeds 8 = 0.5, 0.9, and 0.99. All
the essential features of the apparent shape appear here,
from the elongated prolate ellipsoids at large negative
times, through a variety of concave intermediate shapes, to
the oblate spheroids at large positive times.

We first calculate when the observer is inside the sphere.
The surface touches the observer whenx , (0) =0, thatis,
a = Fa,where a, = (1 — 3?)"?/B. The observer is in-
side the sphere for — a,<a<a,, which is just the time in-
terval for a sphere with the objective shape (1) to pass by.
This is because there is no time delay involved in observing
when the surfaces touch the observer.

Figures 1-3 show that the front surface develops a sharp
convex point at the observer when @ = — a, and that a
concave point develops on the back surface when a = «,,
This behavior can be explained by examining the slope of
x, (p) at y = 0. Differentiating (9) with respect to y and
denoting the derivative by x . gives

i, =r{T1-B[EY +(1—py] "7
X[ FE+ =By "]}

X(1—pH)~ "2, (11)

Here, x, —0 as y—0 for all times other than a = T a,.
When o = Fa,

im %, (D)]a- 54, = —s800)/(1 —-BH'?,
yoe

which is nonzero, and produces a discontinuity in the gra-
dient at y = 0. This gives rise to the points, which become
sharper as /3 increases and a cusp develops in the limit
3 = 1. There is nothing unusual about the behavior of the
sphere in this regard, because it is likely that any smooth
surface will develop a discontinuity in slope as it touches
the observer. For example, the apparent shape of lines and
planes oriented perpendicular to the motion has been stud-
ied several times.""~'° A plane appears as a hyperboloid of
revolution except when it touches the observer and degen-
erates to a cone. '’

Another feature of the shape apparent from Figs. 1-3 is
the existence of a positive interval of time during which
part of the back surface appears concave. The limits a, and
a, of this interval can be calculated by again considering
the derivative (11) of x_(y). When the back surface is
convex, the only place where the derivative can be zero is
y =0, but when it is concave, there will be two nonzero
values of y (symmetric about y = Q) where the derivative
will also be zero. These values are

y= +[48°a" — (1 = B*)(1 + B*a*)*]'"*/(2Ba) ,(12)
and the ends of the interval are
a,=[(1-B/(1+B]1"°/B

and

a,=[(1+8)/(1=p381"/8.

Figures 1-3 show the appearance of the sphere at a = «,
and a = a,, and the limits are plotted in Fig. 4. As -0,
a;— oo and @,— w0, and as f— 1, ¢, -0 and @, — «. Con-
sequently, for every value of S in the range 0 < < 1, the
back surface appears concave over a finite time interval.
The time @ = @, when the sphere leaves the observer is
also plotted in Fig. 4 and occurs inside the interval
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Fig. 4. The values @ = @, @ = a,, and a = a, plotted as functions of £.
Also plotted is @ = 8 ', at which time the maximum fraction of the back
surface appears concave, and the back *'rim”” appears to pass the observer.

a, <a < a, The apparent shape thus becomes concave
when the observer is inside, and becomes convex again

when the observer is outside.

The reason for the concave appearance is as follows. For
large negative a, the photons travel nearly parallel to the x
axis and points on the back surface are physically closer to
the observer as their distance from the x axis increases. The
photons are thus emitted at increasingly later times as this
distance increases and the back surface appears elongated
and convex. However, for certain positions of the observer
inside the sphere, points on the back surface can be physi-
cally further away from the observer with increasing dis-
tance from the x axis. Photons emitted from these points
are emitted at earlier times, and to such an extent that the
back surface appears to curve back in the negative x direc-
tion. This happens for some part of the back surface for all
speeds 8 > 0 because the surface approximates a plane arbi-
trarily accurately as |p|—0, and planes always appear
curved backwards. The concave appearance disappears as
the sphere moves away from the observer because for large
positive a the photons travel nearly parallel to the x axis
again. Although photons emitted from points on the back
surface away from the x axis must still be emitted at earlier
times, the curvature of the surface toward positive x pre-
dominates and the sphere appears convex again.

The maximum extent in the x direction of the concave
section occurs at @ = «,, when the back surface touches
the observer, and is given by

Bxpox =B7/2.

We see that Ax,,,, — « as S— 1. Figures 1-3 show the ap-
parent shape at @ = a,, and the shape at these times for the
higher speeds of 8 = 0.999 and 5 = 0.9999 appear in Fig.
5. Another way to quantify the concave shape is to calcu-
late how much of the back surface becomes concave for a
given value of 5. The maximum value of |y| for which the
surface is concave iS y.,., = +f, and occurs when
a=f3"".Sincey,,, - + lasfF— 1, theentire back surface
of the sphere appears concave whena = 1 and S = 1. The
expression @ = 3 ~ ' is also plotted in Fig. 4, which shows
the observer to be outside the sphere again when the maxi-
mum fraction of the back surface is concave. This occurs
Jjust as the back “rim” appears to pass the observer.
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B =0.999 a = ao = 0.04475
— —
B =0.9999 a=ap=0.01414

Fig. 5. Apparent shape at @ = &, for 8 = 0.999 and = 0.9999 showing
the extremely pinched shape that develops in the back surface at this time,
as B— 1. Note that these two outlines are drawn to different scales.

There is one further point that can be noted about the
apparent shape. The minimum value of , (the time when
the sphere appears convex again) occurs for B=

(5 —1)/2=0.618, and is

172
2 (ﬁ—ﬁ> —3.236.
B—1\1 -5

The physical significance of these values, if any, is not clear.

The above results are, of course, consistent with the re-
sult proved by Penrose’ and Boas that the outline of a
sphere always appears circular. In this case, the outline
(which exists whenever the observer is outside the sphere)
has to be circular because of the rotational symmetry about
the x axis. More generally, if the motion was not along the x
axis, the outline would still appear circular, no matter how
distorted the three-dimensional shape was. When the ob-
server is inside the sphere, there is no outline as no light
rays can leave the surface tangentially and reach the ob-
server. x

az,min =

IV. VOLUME

It is of interest to calculate the volume of the apparent

shape as a function of a and § when the sphere is moving \

along the x axis. Since the shape is a volume of revolution,
the volume is

1
st 2mplx, () —x_(»)]dy
0

=i[ _ 2
3 1872

(I+ "'I——) ’
where
1
1, = [ w15
0

+B(1— B> a1 -y dy.
This evaluates to
V= (47/3)y — (my*/15Pa”)
x{[3Bay~ ' —B*(a® —1) — 1]
X [B2a® —1) + 1 +2Bay~ '
+ [3Bay ' + B —1) +1]

X [B2(a? — 1) + 1 =2Bay™ "1} . (13)
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Fig. 6. The behavior as a varies of the apparent volume ¥ from Eq. (13)
normalized by the rest volume 477/3. The volume is shown for six values of
Bincluding f=0.

Asymptotic expressions for (13) are
Vo @a/3) (1 +B) /0 -1
and
Vo (4n/3)[(1 =B/ (1 +B)]1'% asa- + o,

and, as expected, these are the volumes of the prolate and
oblate spheroids of Egs. (7) and (8).

The volume ( 13) is plotted against a for several values of
pin Fig. 6.

asag—- —

V. THE ULTRARELATIVISTIC LIMIT 8- 1

We now return to the full three-dimensional equations
(5) and (6) and examine the apparent shape in the
ultrarelativistic limit 8- 1. Expanding these equations in

a=0.05

Fig. 7. The outline in the (x,y) plane in the ultrarelativistic limit S 1.
For a >0, the apparent shape is a single curved surface that is part of a
paraboloid of revolution.
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a=0.1

a=0_2 a:03
a=04 a=05 a=1.0 a=20

Fig. 8. The outline in the (x,p) plane at various times of a sphere that is not
moving with its center on the x axis. Here, £ = 0.95 and the impact pa-
rameter is p = 0.5, so the sphere still hits the observer.

powers of ¥ gives, for a <0,
. 1 172 y ,
x, ~_’Bi_:t(__—’__ﬂ_> [1_.(y_p)-_z-]1/2

1 g\ g
— Ly o0, (14)
2a
and for a > 0,
~_/))‘L (li)l/zl_ —p)2 22
Xy 1+Bi 117 [ y—p) ]
~Lr2ro00, (15)
2a

Equation (14) is not particularly interesting because it
only tells us what we already know: The sphere appears
stretched out in the x direction and the amount of stretch-
ing becomes infinite as 8— 1. Equation (15) is more inter-
esting because the separate terms for the front and back
surfaces vanish in the limit S— 1, as do all the terms that
have been discarded. This leaves

x, =a/2— (12a)(y* + 2%, (16)

which shows that the front and back surfaces have merged
and the sphere appears as a one-dimensional curved sheet.
If we consider the case p = 0 again, Eq. (16) indicates the
shape is part of a paraboloid of revolution about the x axis.
[Although (16) does not involve p explicitly, p does affect
the limits of y and z.] When p = 0, the surface cuts the x
axis at x = a/2, and extends back to

Xmin = (&2 —1)/Q2a).
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Consequently, x,;, - — « as a—0, and Fig. 7 shows a
sequence of outlines in the (x,y) plane for a between
a=0.05 and @ =20. As ¢~ + «, Eq. (16) reduces to
x, =a/2, as expected, a flat disk of unit radius.

VL. MOTION WITH p#0

A detailed analysis of the apparent shape of the type
presented in Secs. III and IV for p = 0 is more difficult
when p %0 and this article makes no attempt at it. Figure 8
does present some outlines in the (x,p) plane for a sphere
moving with speed = 0.95 and p = 0.5. Since p < 1, the
sphere still hits the observer and similar behavior to the
p =0 case is observed. However, the three-dimensional
shape can no longer be inferred from these outlines because
the shapes are no longer rotationally symmetric about the x
axis. Here, the outlines give the apparent shapes of a mov-
ing ring in the (x,p) plane. Scott and van Driel® show some
outlines of a sphere in the (x,y) plane when p > 1, and the
outlines in Fig. 8 are very similar to their figures.

VII. CONCLUDING REMARKS

Although the apparent shape of a sphere is simple to
analyze, particularly when it is moving along the x axis, it
should be emphasized that none of the general characteris-
tics of the shape are peculiar to the sphere. Any finite body
(for example, a cube) moving in the same manner will
exhibit a similar shape: elongated when approaching the
observer and foreshortened when receding. In addition,
provided the speed is high enough, the body will appear
concave over a certain time interval and in the limit S — 1 it
will be squashed to a curved sheet when receding from the
observer.
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