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Because of relativistic length concentration, the buoyant force on a submerged projectile depends
on its velocity. How this affects the motion of a submerged projectile is considered here. The case
considered is highly idealized, yielding a tractable conceptual problem in relativity.

L. INTRODUCTION

Consider this relativistic situation: A certain bullet has
rest density equal to the density of water (p,). The bullet
would therefore be neutrally buoyant if it were at rest in
water. But here the bullet is fired horizontally through wa-
ter, so that its energy/c’ (sometimes called “relativistic
mass”’) is increased by the Lorentz factor ¥, and its length
in the direction of motion (hence its volume) is contracted
by 1/7. This makes the bullet’s density 7°p,, and thus it is
denser than water and sinks. (This article addresses a con-
ceptual exercise in relativity and idealizes the problem by
ignoring viscosity and the wake.)

What makes this problem interesting is that at first
glance there seems to be the following paradox: Changing
to the inertial frame in which the bullet’s initial speed is
zero results in the bullet having its rest density and the now
moving water having density y’p,, and thus the bullet
floats instead of sinking. Actually, there can be no paradox,
and calculations in the two frames agree, as is shown below.

II. UNPRIMED INERTIAL FRAME

For convenience, picture a rectangular lake (Fig. 1).
Evoking the equivalence principle, the lake is taken as ac-
celerating upward with acceleration g. The frame is a local
frame; all distances relevant to this problem are much less
than ¢?/g. Using the equivalence principle (in Secs. IT and
III) allows for completing the calculation with no refer-
ence to gravitational forces. The coordinates in Fig. 1 use
the “unprimed” inertial frame in which the lake was in-
stantaneously at rest when the bullet was fired; the origin is
coincident with the lower left corner of the lake at 1 = 0.

In the unprimed frame, the buoyant force on the projec-
tile is the mass of the displaced water times g,

Jo = (Vo/V)pog = myg/7, (1)

where ¥V, and m, are the bullet’s rest volume and rest mass,
respectively. The y component of Newton’s second law is

A =%(7/m(,uy), (2)

f;: - m()(7./uy + 7/‘:1)1)’
where u is the bullet’s velocity, £, is the vertical component
of the usual three-force,'” and the dot denotes differenti-

ation with respect to time. For constant u,, the derivative
of the Lorentz factor is

y= /Ay, ‘ (3)
Using Eq. (3) in the second of Egs. (2) and rearranging
yields

) 1— (u./c)?
S = m()'}’uy(

1= (u,/c)* — (u,/c)?

)zm(ﬁ’ily, 4
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where the approximation holds well since’ u, €c. It is in-
teresting that Eq. (4) is just what would have resulted from
ignoring yu, (the product of two very small terms) in Eq.
(2). But that leap would have been inappropriate at that
time since the size of du,, /dt (which is what is ultimately
sought here) was unknown.

Combining Eqgs. (1) and (4) yields

du, _ 8 (5)

da 7

This upward acceleration of the projectile is less than the
upward acceleration of the lake g so the projectile “sinks”
with relative acceleration,

A=g—g/v =gB> (6)

where f=v/c. The bullet therefore strikes the bottom at
time®

t=y2h/A = (1/B)2h/g (7N

and travels a total horizontal distance

x=vt= (v/BIN2h /g =c\2h /g. (83)
III. PRIMED INERTIAL FRAME

Now, reconsider the entire problem from the inertial
frame in which the initial speed of the projectile is zero (the
primed frame). Choose the origin so that
(x'yy',z't") = (0,0,0,0) is coincident with
(x.y,2,t) = (0,0,0,0). In this frame, the upward accelera-
tion of any fixed point (constant x) on the lake floor (for
example, the lower left corner of the lake) is

a=g/v. \ 9
Equation (9) can be convincingly derived by considering
two briefly separated events at the lower left corner of the
lake, Lorentz transforming these events and the lake
corner’s velocity at these events to the primed frame, and
then simply using the definition of acceleration (see, e.g.,
Ref. 4). Equation (9) can also be obtained from the re-
quirement that the y component of the four-acceleration®
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Fig. 1. Lake and bullet in the unprimed frame.
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of the lake corner be invariant under the standard Lorentz
transformation.
In the primed frame, the water’s density is

P =700 (10)
The buoyant force on the projectile is
fi=pV4. (11)

Noting that the projectile has its rest volume” in the primed
frame and using Eqs. (9) and (10), Eq. (11) becomes

fo=myg. (12)

Comparing Egs. (1) and (12) verifies that this three-force
has Lorentz transformed as it should.® (Readers preferring
four-forces can equivalently verify that the y component of
the four-force is invariant.) Using® ¥’ = | and using Eq.
(12) in the primed equivalent of the first of Egs. {2) yields

du,
dt’
Note that the upward acceleration of the bullet (13) is
greater than the upward acceleration of the corner of the
lake (9); it still seems that the bullet floats in the primed
frame.
This seeming paradox can be resolved by noting that in

the primed frame the lake bottom is no longer flat. The
equation of the lake floor is given by

y=1gt 2, (14)
which can be immediately Lorentz transformed to
y =lgly(t' +vx'/c*)]% (15)

Now one can check whether, and if so where, the bullet
strikes the lake floor: Standard kinematics® gives the bul-
let’s location as

/ 1 (du;\
Using Eq. (13) in (16) gives
yvo=h+1gt" (17)
The impact event has
x'=0 (18)

(since the bullet always has x" = 0). And impact occurs
when the y coordinates of the bullet and lake floor match.
So the impact time is found by equating Egs. (15) and (17)
and solving for ¢’ to obtain

t'=\2h/gJ1/ (P — 1) = (1/yBN2h /g. (19)

Lorentz transforming Egs. (18) and (19) to the unprimed
frame does give Egs. (8) and (7) as expected; the calcula-
tions in the two frames agree.

A second method for arriving at the same result while
working in the primed frame can be stated concisely by
contrasting it with the calculation above: Equation (9)
above is the acceleration of the lake corner as measured in
the primed frame. Since the lake corner has fixed x, Eq. (9)
could be written

ay _8

at 2 X == const. }/2’
as can be directly verified using Eq. (15) plus the Lorentz
transformations. Since the bullet eventually strikes bottom
at a different x, the curved nature of the lake bottom must
be considered. In contrast, one can “stay with the bullet”

(20)
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by considering constant x’. Differentiating Eq. (15) then

gives
a3y
at 2 X' =const. =0 - gyz.

This upward acceleration of the lake floor is greater than
the upward acceleration of the bullet [Eq. (13)], so the
bullet sinks with relative acceleration

A=g(¥—1). (22)

Since this calculation is done with x’ = 0, the curved bot-
tom need not be addressed separately; simple kinematics
yields

t'=v2h/A = (1/vB)N2h /g,

in immediate agreement with Eq. (19).

(21)

(23)

IV. USING GRAVITATIONAL FORCE

Since this problem is fraught with subtleties, it is appro-
priate to reconsider it using the gravitational force; the
equivalence principle is not used in this section. The force
acting on a particle in a constant gravitational field is’

f=ymyc®[ — V Inygoo + Voo (¥V/¢) X curlg].  (24)
For the weak uniform field of this problem

curlg =0, (25)

Zoo=1+2¢/¢, (26)
and

=8 (27)

will be used. Here, @ is the gravitational potential. The
gradient operator is just the usual Cartesian operator,

V=e i (28)
Ix;
Using Egs. (25)-(28) in Eq. (24) yields
f= —j(ymeg)/(1+2gy/c*). (29)
Here, 2gy/c* <1 s0 ‘
f= —jymyg. (30)

That is, gravity pulls down on the total energy/c’, not just
on the rest mass. One might have expected this since gravi-
ty pulls on photons.

The net force on the bullet is the buoyant force (weight
of the water displaced) minus the gravitational force;

Siowa = M8/ —ymeg = — mgg(y — 1/7). (31)
Setting this equal to the time rate of change of the vertical
component of momentum yields

: dy) ( ; )
= 2= —m —-—), (32)
dt(ymo p o8| V "
12— —ep> 63

This agrees with Eq. (6); the bullet therefore strikes the
bottom with the coordinates given by Eqgs. (7) and (8) as
before.

V. A COMMENT

This problem involves a number of subtleties and traps.
It also includes some unrealistic idealizations. The author’s
communications with referees and colleagues suggests that
there are varying points of view regarding this problem,;
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further consideration of some of the issues raised here
could be interesting. A full treatment involving relativistic
hydrodynamics® would be revealing, but probably difficult.
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A simple way of obtaining an explicit expression for the perturbative expansion of the evolution

operator to any order is shown.

In the following, I would like to show a simple method of
calculating the quantum mechanical evolution operator. A
usual problem occurring in actual calculations is the evalu-
ation of transition rates, for which Dirac’s procedure of
“variation of constants” " is mainly adopted. Let us briefly
recall it: If H, denotes the unperturbed Hamiltonian, |k )
and E, denote its eigenvectors and eigenvalues, respective-
ly, and ¥V denotes the perturbation suddenly starting at
t =0, the eigenfunctions of the total Hamiltonian
H = H, + V are expanded into eigenfunctions |k ) of H,,
the amplitudes of which are time dependent; from the
Schridinger equation, a system of coupled differential
equations is obtained for these amplitudes, and a perturba-
tive solution is worked out. The explicit form of this solu-
tion, if the time interval (0, ¢) goes to infinity, can be given
to all orders.**

This method does not work so well if we search for a
solution at a finite time #: Convolution theorems for Four-
ier transforms cannot be used and the multiple integrals
occurring in higher-order terms become more and more
cumbersome. We will see, however, that the calculation
can be performed without difficulty by complex analysis
methods. A very beautiful application of these methods to
quantum mechanics was given by Merzbacher,” who, start-
ing from a generalized Cauchy’s formula, recovered in a
very elegant and compact form explicit expressions for an
arbitrary function of a matrix (until then, this subject was
treated only in specialized mathematical publications).
Therefore, the problem of the temporal evolution of a phys-
ical system, described by a finite number of basis states, has
become, in principle, a straightforward one.

The same method can be used in a perturbative approach
(the basic formulation is extensively discussed in the litera-
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ture>’); the generalized Cauchy’s formula is written in the
form

f(L)=(2‘m')_'f A (z— L)™' dz (D
Y

expressing the function of a general Hermitian operator L
as a contour integral, and ¥, is a closed contour enclosing
all the nonzero eigenvalues of L. The total wavefunction
(1) is related to (0) by means of the evolution operator
Ut

[#()) = UD)[3(0)), (2)
with

U(t) =expl — (i/f)Ht), H=H,+V,

H0|k>=Ek|k>- (3

If |#(0)) = |m), on the basis of the eigenvectors of H,, we
have

() =Y ac(®k), a(t)=(k|UM®m). (4)
k
In this case, Eq. (1) becomes
f(Hy+ V)= Qmi)~! f N(2)G(2)dz, (5)
Ve

where

f(2) =exp[ — (i/F)zt), G(2) =[z— (Hy+ N}

(6)

and y_ encloses all the eigenvalues of (H, + V) as well as
the eigenvalues of H,; setting

Go(2) = [z~ H,) ™, N
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